Yang–Mills black holes in quasitopological gravity

被引:0
|
作者
Fatemeh Naeimipour
Behrouz Mirza
Fatemeh Masoumi Jahromi
机构
[1] Isfahan University of Technology,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we formulate two new classes of black hole solutions in higher curvature quartic quasitopological gravity with nonabelian Yang–Mills theory. At first step, we consider the SO(n) and SO(n-1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SO(n-1,1)$$\end{document} semisimple gauge groups. We obtain the analytic quartic quasitopological Yang–Mills black hole solutions. Real solutions are only accessible for the positive value of the redefined quartic quasitopological gravity coefficient, μ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{4}$$\end{document}. These solutions have a finite value and an essential singularity at the origin, r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document} for space dimension higher than 8. We also probe the thermodynamic and critical behavior of the quasitopological Yang–Mills black hole. The obtained solutions may be thermally stable only in the canonical ensemble. They may also show a first order phase transition from a small to a large black hole. In the second step, we obtain the pure quasitopological Yang–Mills black hole solutions. For the positive cosmological constant and the space dimensions greater than eight, the pure quasitopological Yang–Mills solutions have the ability to produce both the asymptotically AdS and dS black holes for respectively the negative and positive constant curvatures, k=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=-1$$\end{document} and k=+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=+1$$\end{document}. This is unlike the quasitopological Yang–Mills theory which can lead to just the asymptotically dS solutions for Λ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda >0$$\end{document}. The pure quasitopological Yang–Mills black hole is not thermally stable.
引用
收藏
相关论文
共 50 条
  • [31] Lifshitz quartic quasitopological black holes
    Ghanaatian, M.
    Bazrafshan, A.
    Brenna, W. G.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [32] Spinning higher dimensional Einstein–Yang–Mills black holes
    Sushant G. Ghosh
    Uma Papnoi
    The European Physical Journal C, 2014, 74
  • [33] Formation and decay of Einstein-Yang-Mills black holes
    Rinne, Oliver
    PHYSICAL REVIEW D, 2014, 90 (12):
  • [34] Sequences of Einstein-Yang-Mills-dilaton black holes
    Kleihaus, B
    Kunz, J
    Sood, A
    PHYSICAL REVIEW D, 1996, 54 (08): : 5070 - 5092
  • [35] INSTABILITY OF EINSTEIN-YANG-MILLS BLACK-HOLES
    GALTSOV, DV
    VOLKOV, MS
    PHYSICS LETTERS A, 1992, 162 (02) : 144 - 148
  • [36] Internal structure of Einstein-Yang-Mills black holes
    Donets, EE
    Galtsov, DV
    Zotov, MY
    PHYSICAL REVIEW D, 1997, 56 (06): : 3459 - 3465
  • [37] Lovelock black holes with a power-Yang-Mills source
    Mazharimousavi, S. Habib
    Halilsoy, M.
    PHYSICS LETTERS B, 2009, 681 (02) : 190 - 199
  • [38] STABILITY OF EINSTEIN YANG-MILLS BLACK-HOLES
    BIZON, P
    PHYSICS LETTERS B, 1991, 259 (1-2) : 53 - 57
  • [39] BLACK-HOLES IN EINSTEIN-YANG-MILLS THEORY
    VOLKOV, MS
    GALTSOV, DV
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1990, 51 (04): : 747 - 753
  • [40] Quasitopological Reissner-Nordstrom black holes
    Brenna, W. G.
    Mann, R. B.
    PHYSICAL REVIEW D, 2012, 86 (06):