Hasse invariants for the Clausen elliptic curves

被引:0
|
作者
Ahmad El-Guindy
Ken Ono
机构
[1] University of Wisconsin-Madison,Department of Mathematics
[2] Cairo University,Department of Mathematics, Faculty of Science
[3] Texas A&M University at Qatar,Science Program
[4] Emory University,Department of Mathematics and Computer Science
来源
The Ramanujan Journal | 2013年 / 31卷
关键词
Hypergeometric functions; Hasse invariants; 11G20; 14H52;
D O I
暂无
中图分类号
学科分类号
摘要
Gauss’s [inline-graphic not available: see fulltext] hypergeometric function gives periods of elliptic curves in Legendre normal form. Certain truncations of this hypergeometric function give the Hasse invariants for these curves. Here we study another form, which we call the Clausen form, and we prove that certain truncations of [inline-graphic not available: see fulltext] and [inline-graphic not available: see fulltext] in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{p}[x]$\end{document} are related to the characteristic p Hasse invariants.
引用
收藏
页码:3 / 13
页数:10
相关论文
共 50 条