Projection extragradient algorithms for solving nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces

被引:0
|
作者
Lanmei Deng
Rong Hu
Yaping Fang
机构
[1] Sichuan University,College of Mathematics
[2] Chengdu University of Information Technology,College of Applied Mathematics
来源
Numerical Algorithms | 2021年 / 86卷
关键词
Nonmonotone equilibrium problem; Minty equilibrium problem; Projection extragradient algorithms; Armijo-linesearch; Weak convergence; Strong convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We present two projection extragradient algorithms for solving equilibrium problems without monotonicity and Lipschitz-type property in Hilbert spaces. Our strategy consists in embedding a subgradient projection step in the extragradient algorithm and employing an Armijo-linesearch. The strategy guarantees that the sequences generated by the presented algorithms converge weakly and strongly to a solution of the equilibrium problem, respectively. The convergence does not require any monotonicity and Lipschitz-type property of the bifunction but the nonemptyness of the solution set of the associated Minty equilibrium problem. Some numerical experiments illustrate the efficiency of the proposed algorithms.
引用
收藏
页码:191 / 221
页数:30
相关论文
共 50 条
  • [41] A General Composite Algorithms for Solving General Equilibrium Problems and Fixed Point Problems in Hilbert Spaces
    Wangkeeree, Rattanaporn
    Kamraksa, Uthai
    Wangkeeree, Rabian
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [42] Correction to: Two algorithms for solving mixed equilibrium problems and fixed point problems in Hilbert spaces
    Mohammad Farid
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2022, 68 (1) : 237 - 237
  • [43] The inertial iterative extragradient methods for solving pseudomonotone equilibrium programming in Hilbert spaces
    Rehman, Habib Ur
    Kumam, Poom
    Argyros, Ioannis K.
    Kumam, Wiyada
    Shutaywi, Meshal
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [44] A General Composite Algorithms for Solving General Equilibrium Problems and Fixed Point Problems in Hilbert Spaces
    Wangkeeree, Rabian
    Bantaojai, Thanatporn
    THAI JOURNAL OF MATHEMATICS, 2011, 9 (01): : 197 - 218
  • [45] The inertial iterative extragradient methods for solving pseudomonotone equilibrium programming in Hilbert spaces
    Habib ur Rehman
    Poom Kumam
    Ioannis K. Argyros
    Wiyada Kumam
    Meshal Shutaywi
    Journal of Inequalities and Applications, 2022
  • [46] A Modified Inertial Shrinking Projection Method for Solving Inclusion Problems and Split Equilibrium Problems in Hilbert Spaces
    Cholamjiak, Watcharaporn
    Khan, Suhel Ahmad
    Suantai, Suthep
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (02): : 191 - 213
  • [47] The Ishikawa Subgradient Extragradient Method for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces
    Duc, Manh Hy
    Thanh, Ha Nguyen Thi
    Huyen, Thanh Tran Thi
    Dinh, Bui Van
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) : 1065 - 1088
  • [48] Extragradient method with a new adaptive step size for solving non-Lipschitzian pseudo-monotone variational inequalities
    Duong Viet Thong
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (02) : 503 - 516
  • [49] Algorithms for solving generalized equilibrium problems and fixed points of nonexpansive semigroups in Hilbert spaces
    Suantai, Suthep
    Cholamjiak, Prasit
    OPTIMIZATION, 2014, 63 (05) : 799 - 815
  • [50] Non-Lipschitzian control algorithms for extended mechanical systems
    Protopopescu, V
    Barhen, J
    CHAOS, 2004, 14 (02) : 400 - 407