We study the Γ-convergence of the following functional (p > 2)
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$F_{\varepsilon}(u):=\varepsilon^{p-2}\int\limits_{\Omega}
|Du|^p d(x,\partial \Omega)^{a}dx+\frac{1}{\varepsilon^{\frac{p-2}{p-1}}}
\int\limits_{\Omega}
W(u) d(x,\partial \Omega)^{-\frac{a}{p-1}}dx+\frac{1}{\sqrt{\varepsilon}}
\int\limits_{\partial\Omega}
V(Tu)d\mathcal{H}^2,$$\end{document}where Ω is an open bounded set of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{R}^3}$$\end{document} and W and V are two non-negative continuous functions vanishing at α, β and α′, β′, respectively. In the previous functional, we fix a = 2 − p and u is a scalar density function, Tu denotes its trace on ∂Ω, d(x, ∂Ω) stands for the distance function to the boundary ∂Ω. We show that the singular limit of the energies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${F_{\varepsilon}}$$\end{document} leads to a coupled problem of bulk and surface phase transitions.