A unified approach to concrete plancherel theory of homogeneous spaces

被引:0
|
作者
Ronald L. Lipsman
机构
[1] University of Maryland,Department of Mathematics
关键词
D O I
10.1007/BF02678049
中图分类号
学科分类号
摘要
引用
收藏
页码:545 / 546
页数:1
相关论文
共 50 条
  • [21] PLANCHEREL THEORY FOR REAL SPHERICAL SPACES: CONSTRUCTION OF THE BERNSTEIN MORPHISMS
    Delorme, Patrick
    Knoep, Friedrich
    Krotz, Bernhard
    Schlichtkrull, Henrik
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 34 (03) : 815 - 908
  • [22] Plancherel-Polya type inequality on spaces of homogeneous type and its applications
    Han, YS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) : 3315 - 3327
  • [23] Lie Theory Harmonic Analysis on Symmetric Spaces - General Plancherel Theorems
    Beltita, Daniel
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 52 (05): : 595 - 596
  • [24] A unified approach for concrete impact
    Wen, H. M.
    Xian, Y. X.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2015, 77 : 84 - 96
  • [25] ON THE THEORY OF HOMOGENEOUS LIPSCHITZ-SPACES AND CAMPANATO SPACES
    GREENWALD, H
    PACIFIC JOURNAL OF MATHEMATICS, 1983, 106 (01) : 87 - 93
  • [26] FRP-Reinforced Concrete Beams: Unified Approach Based on IC Theory
    Oehlers, Deric John
    Ali, M. S. Mohamed
    Haskett, Matthew
    Lucas, Wade
    Muhamad, Rahimah
    Visintin, Phillip
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2011, 15 (03) : 293 - 303
  • [27] MORSE THEORY ON KAHLER HOMOGENEOUS SPACES
    PARKER, GD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 34 (02) : 586 - +
  • [28] Equidistribution in Homogeneous Spaces and Number Theory
    Lindenstrauss, Elon
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL I: PLENARY LECTURES AND CEREMONIES, 2010, : 531 - 557
  • [29] Homogeneous spaces in coincidence theory II
    Gonçalves, DL
    Wong, PNS
    FORUM MATHEMATICUM, 2005, 17 (02) : 297 - 313
  • [30] THE AFFINE APPROACH TO HOMOGENEOUS GEODESICS IN HOMOGENEOUS FINSLER SPACES
    Dusek, Zdenek
    ARCHIVUM MATHEMATICUM, 2018, 54 (05): : 257 - 263