Efficient polygenic risk scores for biobank scale data by exploiting phenotypes from inferred relatives

被引:0
|
作者
Buu Truong
Xuan Zhou
Jisu Shin
Jiuyong Li
Julius H. J. van der Werf
Thuc D. Le
S. Hong Lee
机构
[1] UniSA STEM,Australian Centre for Precision Health
[2] University of South Australia,UniSA Allied Health and Human Performance
[3] Pham Ngoc Thach University of Medicine,School of Environmental and Rural Science
[4] University of South Australia Cancer Research Institute,undefined
[5] University of South Australia,undefined
[6] University of South Australia,undefined
[7] University of New England,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Polygenic risk scores are emerging as a potentially powerful tool to predict future phenotypes of target individuals, typically using unrelated individuals, thereby devaluing information from relatives. Here, for 50 traits from the UK Biobank data, we show that a design of 5,000 individuals with first-degree relatives of target individuals can achieve a prediction accuracy similar to that of around 220,000 unrelated individuals (mean prediction accuracy = 0.26 vs. 0.24, mean fold-change = 1.06 (95% CI: 0.99-1.13), P-value = 0.08), despite a 44-fold difference in sample size. For lifestyle traits, the prediction accuracy with 5,000 individuals including first-degree relatives of target individuals is significantly higher than that with 220,000 unrelated individuals (mean prediction accuracy = 0.22 vs. 0.16, mean fold-change = 1.40 (1.17-1.62), P-value = 0.025). Our findings suggest that polygenic prediction integrating family information may help to accelerate precision health and clinical intervention.
引用
收藏
相关论文
共 50 条
  • [31] Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts
    Wang, Ying
    Namba, Shinichi
    Lopera, Esteban
    Kerminen, Sini
    Tsuo, Kristin
    Lall, Kristi
    Kanai, Masahiro
    Zhou, Wei
    Wu, Kuan-Han
    Fave, Marie-Julie
    Bhatta, Laxmi
    Awadalla, Philip
    Brumpton, Ben
    Deelen, Patrick
    Hveem, Kristian
    Lo Faro, Valeria
    Magi, Reedik
    Murakami, Yoshinori
    Sanna, Serena
    Smoller, Jordan W.
    Uzunovic, Jasmina
    Wolford, Brooke N.
    Willer, Cristen
    Gamazon, Eric R.
    Cox, Nancy J.
    Surakka, Ida
    Okada, Yukinori
    Martin, Alicia R.
    Hirbo, Jibril
    CELL GENOMICS, 2023, 3 (01):
  • [32] Global biobank analyses provide lessons for computing polygenic risk scores across diverse cohorts
    Wang, Ying
    Namba, Shinichi
    Lopera-Maya, Esteban
    Kerminen, Sini
    Tsuo, Kristin
    Lall, Kristi
    Kanai, Masahiro
    Zhou, Wei
    Wu, Kuan-Han
    Fave, Marie-Julie
    Bhatta, Laxmi
    Awadalla, Philip
    Ben Brumpton
    Deelen, Patrick
    Hveem, Kristian
    Lo Faro, Valeria
    Magi, Reedik
    Murakami, Yoshinori
    Sanna, Serena
    Smoller, Jordan
    Uzunovic, Jasmina
    Wolford, Brooke
    Willer, Cristen
    Gamazon, Eric
    Cox, Nancy
    Surakka, Ida
    Okada, Yukinori
    Martin, Alicia
    Hirbo, Jibril
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 307 - 308
  • [33] ASSESSING THE CLINICAL UTILITY OF PUBLISHED PROSTATE CANCER POLYGENIC RISK SCORES IN A LARGE BIOBANK DATASET
    Sun, Helen H.
    Singhal, Udit
    Schumacher, Frederick R.
    Trapl, Erika
    Fritsche, Lars G.
    Morgan, Todd M.
    Vince, Randy A., Jr.
    JOURNAL OF UROLOGY, 2024, 211 (05): : E441 - E442
  • [34] High polygenic risk score is a risk factor associated with colorectal cancer based on data from the UK Biobank
    Yang, Mei
    Narasimhan, Vagheesh M.
    Zhan, F. Benjamin
    PLOS ONE, 2023, 18 (11):
  • [35] Self-reported walking pace, polygenic risk scores and risk of coronary artery disease in UK biobank
    Zaccardi, F.
    Timmins, I. R.
    Goldney, J.
    Dudbridge, F.
    Dempsey, P. C.
    Davies, M. J.
    Khunti, K.
    Yates, T.
    NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2022, 32 (11) : 2630 - 2637
  • [36] The Promise of Polygenic Risk Scores as a Research Tool to Analyse the Genetics Underlying IBD Phenotypes
    Abakkouy, Yasmina
    Cleynen, Isabelle
    JOURNAL OF CROHNS & COLITIS, 2021, 15 (06): : 877 - 878
  • [37] DISSECTING SUB-PHENOTYPES OF BIPOLAR DISORDER USING MULTIPLE POLYGENIC RISK SCORES
    Coombes, Brandon
    Markota, Matej
    Cheng, Gao
    McElroy, Susan
    Stahl, Eli
    Frye, Mark
    Biernacka, Joanna
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S231 - S231
  • [38] Associations between polygenic risk scores for cardiometabolic phenotypes and adolescent depression and body dissatisfaction
    Ekberg, Krista M.
    Michelini, Giorgia
    Schneider, Kristin L.
    Docherty, Anna R.
    Shabalin, Andrey A.
    Perlman, Greg
    Kotov, Roman
    Klein, Daniel N.
    Waszczuk, Monika A.
    PEDIATRIC RESEARCH, 2024, : 1853 - 1860
  • [39] USE OF POLYGENIC RISK SCORES IN BIPOLAR DISORDER SUB-PHENOTYPES: A SYSTEMATIC REVIEW
    Solares-Bravo, Melissa
    Ercis, Mete
    Frye, Mark A.
    Veldic, Marin
    Winham, Stacey J.
    Ozerdem, Aysegul
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2023, 75 : S182 - S183
  • [40] An efficient sampling strategy for selection of biobank samples using risk scores
    Bjork, Jonas
    Malmqvist, Ebba
    Rylander, Lars
    Rignell-Hydbom, Anna
    SCANDINAVIAN JOURNAL OF PUBLIC HEALTH, 2017, 45 : 41 - 44