In silico and in vitro study of Mycobacterium tuberculosis H37Rv uncharacterized protein (RipD): an insight on tuberculosis therapeutics

被引:0
|
作者
Aregitu Mekuriaw Arega
Ajit Kumar Dhal
Sasmita Nayak
Rajani Kanta Mahapatra
机构
[1] KIIT Deemed to Be University,School of Biotechnology
[2] National Veterinary Institute,undefined
来源
关键词
Tuberculosis, Hypothetical protein; Virtual screening; Molecular dynamics simulations; In vitro inhibition assay; MM-PB/GBSA approach;
D O I
暂无
中图分类号
学科分类号
摘要
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is responsible for the highest global health problem, with the deaths of millions of people. With prevalence of multiple drug resistance (MDR) strains and extended therapeutic times, it is important to discover small molecule inhibitors against novel hypothetical proteins of the pathogen. In this study, a virtual screening protocol was carried out against MtbH37Rv hypothetical protein RipD (Rv1566c) for the identification of potential small molecule inhibitors. The 3D model of the protein structure binding site was used for virtual screening (VS) of inhibitors from the Pathogen Box, followed by its validation through a molecular docking study. The stability of the protein–ligand complex was assessed using a 150 ns molecular dynamics simulation. MM-PBSA and MM-GBSA are the two approaches that were used to perform the trajectory analysis and determine the binding free energies, respectively. The ligand binding was observed to be stable across the entire time frame with an approximate binding free energy of -22.9916 kcal/mol. The drug-likeness of the inhibitors along with a potential anti-tuberculosis compound was validated by ADMET prediction software. Furthermore, a CFU inhibition assay was used to validate the best hit compound’s in vitro inhibitory efficacy against a non-pathogenic Mycobacterium smegmatis MC2155 under low nutrient culture conditions. The study reported that the compound proposed in our study (Pathogen Box ID: MMV687700) will be useful for the identification of potential inhibitors against Mtb in future.
引用
下载
收藏
相关论文
共 50 条
  • [21] ISOLATION AND PURIFICATION OF SULFOLIPIDS OF MYCOBACTERIUM-TUBERCULOSIS, H37RV
    PRABHUDESAI, AV
    MALIK, U
    SUBRAHMANYAM, D
    KHULLER, GK
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 1981, 18 (01): : 71 - 73
  • [22] Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics
    Fang, Zhuo
    van der Merwe, Ruben Gerhard
    Warren, Robin Mark
    Schubert, Wolf-Dieter
    van Pittius, Nicolaas Claudius Gey
    TUBERCULOSIS, 2015, 95 (02) : 131 - 136
  • [23] Learning from the genome sequence of Mycobacterium tuberculosis H37Rv
    Cole, ST
    FEBS LETTERS, 1999, 452 (1-2) : 7 - 10
  • [24] STUDIES OF THE CATALASE ACTIVITY OF MYCOBACTERIUM TUBERCULOSIS STRAIN H37RV
    TYSAROWSKI, W
    KWIEK, S
    AMERICAN REVIEW OF RESPIRATORY DISEASE, 1959, 80 (02): : 257 - 258
  • [25] A comprehensive update to the Mycobacterium tuberculosis H37Rv reference genome
    Chitale, Poonam
    Lemenze, Alexander D.
    Fogarty, Emily C.
    Shah, Avi
    Grady, Courtney
    Odom-Mabey, Aubrey R.
    Johnson, W. Evan
    Yang, Jason H.
    Eren, A. Murat
    Brosch, Roland
    Kumar, Pradeep
    Alland, David
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] MECHANISM OF STREPTOMYCIN ACTION IN MYCOBACTERIUM-TUBERCULOSIS H37RV
    SHAILA, MS
    GOPINATHAN, KP
    RAMAKRISHNAN, T
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 1975, 57 (09) : 301 - 316
  • [27] OCCURRENCE OF ASCORBIC ACID IN MYCOBACTERIUM-TUBERCULOSIS H37RV
    ALLAUDEE.HS
    RAMAKRIS.T
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 1971, 9 (02) : 278 - &
  • [28] The multiple activities of polyphosphate kinase of Mycobacterium tuberculosis H37Rv
    Hwang, M. -R.
    Yoon, J. W.
    Park, S. -K.
    Kim, N. -I.
    Jung, H. -S.
    Kim, H. -Y.
    FEBS JOURNAL, 2008, 275 : 405 - 405
  • [29] Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria
    Jesenská, A
    Sedlácek, I
    Damborsky, J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (01) : 219 - 222
  • [30] STUDIES ON MYCOBACTERIUM TUBERCULOSIS H37RV GROWN IN-VIVO
    ARTMAN, M
    BEKIERKUNST, A
    AMERICAN REVIEW OF RESPIRATORY DISEASE, 1961, 83 (01): : 100 - &