Symmetric Polynomials in the Free Metabelian Lie Algebras

被引:0
|
作者
Vesselin Drensky
Şehmus Fındık
Nazar Şahn Öüşlü
机构
[1] Bulgarian Academy of Sciences,Institute of Mathematics and Informatics
[2] Çukurova University,Department of Mathematics
来源
关键词
Free metabelian Lie algebras; symmetric polynomials; 17B01; 17B30; 05E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let K[Xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[X_n]$$\end{document} be the commutative polynomial algebra in the variables Xn={x1,…,xn}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_n=\{x_1,\ldots ,x_n\}$$\end{document} over a field K of characteristic zero. A theorem from undergraduate course of algebra states that the algebra K[Xn]Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[X_n]^{S_n}$$\end{document} of symmetric polynomials is generated by the elementary symmetric polynomials which are algebraically independent over K. In the present paper, we study a noncommutative and nonassociative analogue of the algebra K[Xn]Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[X_n]^{S_n}$$\end{document} replacing K[Xn]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[X_n]$$\end{document} with the free metabelian Lie algebra Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document} of rank n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 2$$\end{document} over K. It is known that the algebra FnSn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n^{S_n}$$\end{document} is not finitely generated, but its ideal (Fn′)Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n')^{S_n}$$\end{document} consisting of the elements of FnSn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n^{S_n}$$\end{document} in the commutator ideal Fn′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n'$$\end{document} of Fn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n$$\end{document} is a finitely generated K[Xn]Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[X_n]^{S_n}$$\end{document}-module. In our main result, we describe the generators of the K[Xn]Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K[X_n]^{S_n}$$\end{document}-module (Fn′)Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(F_n')^{S_n}$$\end{document} which gives the complete description of the algebra FnSn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_n^{S_n}$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Embedding properties of metabelian Lie algebras and metabelian discrete groups
    Groves, J. R. J.
    Kochloukova, D. H.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 73 : 475 - 492
  • [42] Free Lie algebras as modules for symmetric groups
    Bryant, RM
    Kovács, LG
    Stöhr, R
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1999, 67 : 143 - 156
  • [43] Classification of metabelian Lie algebras of maximal rank
    Fernández-Ternero, D
    Núñez-Valdés, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (11): : 969 - 974
  • [44] DUALITY THEORIES FOR METABELIAN LIE-ALGEBRAS
    GAUGER, MA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 187 (01) : 89 - 102
  • [45] PROJECTIVE METABELIAN GROUPS AND LIE-ALGEBRAS
    ARTAMONOV, VA
    MATHEMATICS OF THE USSR-IZVESTIYA, 1978, 12 (02): : 213 - 223
  • [46] A note on Lie centrally metabelian group algebras
    Sahai, M
    Srivastava, JB
    JOURNAL OF ALGEBRA, 1997, 187 (01) : 7 - 15
  • [47] Lie metabelian restricted universal enveloping algebras
    Siciliano, S
    Spinelli, E
    ARCHIV DER MATHEMATIK, 2005, 84 (05) : 398 - 405
  • [48] Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras
    Ferreira, Vitor O.
    Goncalves, Jairo Z.
    Sanchez, Javier
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2015, 25 (06) : 1075 - 1106
  • [49] Finitely presented metabelian restricted Lie algebras
    Kochloukova, Dessislava H.
    Leon, Adriana Juzga
    JOURNAL OF ALGEBRA, 2020, 560 : 1107 - 1145
  • [50] GENERATORS AND RELATIONS FOR METABELIAN LIE-ALGEBRAS
    WISLICENY, J
    ZERCK, R
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 112 : 449 - 453