Analysis of lidar measurements using nonparametric kernel regression methods

被引:0
|
作者
T. Lindström
U. Holst
P. Weibring
H. Edner
机构
[1] Centre for Mathematical Sciences,
[2] Division of Mathematical Statistics,undefined
[3] Lund University,undefined
[4] Box 118,undefined
[5] 22100 Lund,undefined
[6] Sweden,undefined
[7] Division of Atomic Physics,undefined
[8] Lund Institute of Technology,undefined
[9] Box 118,undefined
[10] 22100 Lund,undefined
[11] Sweden,undefined
来源
Applied Physics B | 2002年 / 74卷
关键词
PACS: 42.68.Wt; 02.50.Tt;
D O I
暂无
中图分类号
学科分类号
摘要
The lidar technique is an efficient tool for remote monitoring of the distribution of a number of atmospheric species. We study measurements of sulphur dioxide emitted from the Italian volcano Mt. Etna. This study is focused on the treatment of data and on the procedure to evaluate range-resolved concentrations. In order to make an in-depth analysis, the lidar system was prepared to store measurements of individual backscattered laser pulses. Utilizing these repeated measurements a comparison of three different methods to average the returned signals is made. In the evaluation process we use local polynomial regression to estimate the range-resolved concentrations. Here we calculate optimal bandwidths based on the empirical-bias bandwidth selector. We also compare two different variance estimators for the path-integrated curves: local polynomial variance estimation and variance estimation based on Taylor approximations. Results show that the method performs well. An advantage compared to previous methods for evaluation of lidar measurements is that an estimate of the mean squared error of the estimated concentration can be calculated.
引用
收藏
页码:155 / 165
页数:10
相关论文
共 50 条
  • [21] Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations
    Wang, Lu
    Rotnitzky, Andrea
    Lin, Xihong
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2010, 105 (491) : 1135 - 1146
  • [22] LINEAR AND NONLINEAR METHODS OF NONPARAMETRIC REGRESSION ANALYSIS.
    Katkovnik, V.Ya.
    Soviet automatic control, 1979, 12 (05): : 25 - 34
  • [23] AN INTRODUCTION TO DIMENSION REDUCTION IN NONPARAMETRIC KERNEL REGRESSION
    Girard, S.
    Saracco, J.
    STATISTICS FOR ASTROPHYSICS: METHODS AND APPLICATIONS OF THE REGRESSION, 2015, 66 : 167 - +
  • [24] Nonparametric kernel regression estimation near endpoints
    Kyung-Joon, C
    Schucany, WR
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 66 (02) : 289 - 304
  • [25] Correlation and marginal longitudinal kernel nonparametric regression
    Linton, OB
    Mammen, E
    Lin, XH
    Carroll, RJ
    PROCEEDINGS OF THE SECOND SEATTLE SYMPOSIUM IN BIOSTATISTICS: ANALYSIS OF CORRELATED DATA, 2004, 179 : 23 - 33
  • [26] Weighted kernel estimators in nonparametric binomial regression
    Okumura, H
    Naito, K
    JOURNAL OF NONPARAMETRIC STATISTICS, 2004, 16 (1-2) : 39 - 62
  • [27] Nonparametric kernel regression subject to monotonicity constraints
    Hall, P
    Huang, LS
    ANNALS OF STATISTICS, 2001, 29 (03): : 624 - 647
  • [29] KERNEL REGRESSION ESTIMATION USING REPEATED MEASUREMENTS DATA
    HART, JD
    WEHRLY, TE
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1986, 81 (396) : 1080 - 1088
  • [30] Validating a survey instrument using nonparametric item responsetheory application of kernel regression
    Lin, H. W.
    Pickard, A. S.
    Karabatsos, G.
    Mahady, G. B.
    Crawford, S. Y.
    Popovich, N. G.
    VALUE IN HEALTH, 2008, 11 (03) : A20 - A20