Analysis of lidar measurements using nonparametric kernel regression methods

被引:0
|
作者
T. Lindström
U. Holst
P. Weibring
H. Edner
机构
[1] Centre for Mathematical Sciences,
[2] Division of Mathematical Statistics,undefined
[3] Lund University,undefined
[4] Box 118,undefined
[5] 22100 Lund,undefined
[6] Sweden,undefined
[7] Division of Atomic Physics,undefined
[8] Lund Institute of Technology,undefined
[9] Box 118,undefined
[10] 22100 Lund,undefined
[11] Sweden,undefined
来源
Applied Physics B | 2002年 / 74卷
关键词
PACS: 42.68.Wt; 02.50.Tt;
D O I
暂无
中图分类号
学科分类号
摘要
The lidar technique is an efficient tool for remote monitoring of the distribution of a number of atmospheric species. We study measurements of sulphur dioxide emitted from the Italian volcano Mt. Etna. This study is focused on the treatment of data and on the procedure to evaluate range-resolved concentrations. In order to make an in-depth analysis, the lidar system was prepared to store measurements of individual backscattered laser pulses. Utilizing these repeated measurements a comparison of three different methods to average the returned signals is made. In the evaluation process we use local polynomial regression to estimate the range-resolved concentrations. Here we calculate optimal bandwidths based on the empirical-bias bandwidth selector. We also compare two different variance estimators for the path-integrated curves: local polynomial variance estimation and variance estimation based on Taylor approximations. Results show that the method performs well. An advantage compared to previous methods for evaluation of lidar measurements is that an estimate of the mean squared error of the estimated concentration can be calculated.
引用
收藏
页码:155 / 165
页数:10
相关论文
共 50 条
  • [1] Analysis of lidar measurements using nonparametric kernel regression methods
    Lindström, T
    Holst, U
    Weibring, P
    Edner, H
    APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 74 (02): : 155 - 165
  • [2] NONPARAMETRIC REGRESSION - KERNEL METHODS AND WEIGHTED LOCAL REGRESSION
    ELFAOUZI, NE
    SARDA, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1994, 318 (01): : 69 - 72
  • [3] Median regression using nonparametric kernel estimation
    Subramanian, S
    JOURNAL OF NONPARAMETRIC STATISTICS, 2002, 14 (05) : 583 - 605
  • [4] WEIGHTED LOCAL REGRESSION AND KERNEL METHODS FOR NONPARAMETRIC CURVE FITTING
    MULLER, HG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) : 231 - 238
  • [5] USING A BIMODAL KERNEL FOR A NONPARAMETRIC REGRESSION SPECIFICATION TEST
    Park, Cheolyong
    Kim, Tae Yoon
    Ha, Jeongcheol
    Luo, Zhi-Ming
    Hwang, Sun Young
    STATISTICA SINICA, 2015, 25 (03) : 1145 - 1161
  • [6] A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression
    Aydin, Dursun
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 26, PARTS 1 AND 2, DECEMBER 2007, 2007, 26 : 730 - 734
  • [7] Kernel adjusted nonparametric regression
    Eichner, Gerrit
    Stute, Winfried
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (09) : 2537 - 2544
  • [8] Kernel Selection in Nonparametric Regression
    Halconruy, H.
    Marie, N.
    MATHEMATICAL METHODS OF STATISTICS, 2020, 29 (01) : 32 - 56
  • [9] Kernel Selection in Nonparametric Regression
    H. Halconruy
    N. Marie
    Mathematical Methods of Statistics, 2020, 29 : 32 - 56
  • [10] Nonparametric multivariate regression methods to determine dexamethasone concentration using ELISA measurements
    Javier Acevedo, F.
    Jimenez, Javier
    Maldonado, Saturnino
    Dominguez, Elena
    Narvaez, Arantzazu
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 100 (01) : 41 - 47