Some Results About the Operator Perturbation of a K-Frame

被引:0
|
作者
Man Jia
Yu-Can Zhu
机构
[1] Fuzhou University,Department of Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
-Frame; tight ; -frame; operator perturbation; 42C99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we mainly study the stabilities of K-frames under the operator perturbation. Firstly, we provide several sufficient conditions of the operator perturbation for a K-frame by using a bounded linear operator T from H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_1}$$\end{document} to H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_2}$$\end{document}. We also give an equivalent characterization of the operator perturbation for a tight K-frame. Meanwhile, we correct two results which were obtained by Ramu. Lastly, we show that a K-frame can construct a T-frame by the perturbation of a bounded linear operator T. Our results generalize the remarkable results of the operator perturbation for a frame which were obtained by Casazza, Christensen, etc. when we take K=I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = I$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [11] Some new results about the massless Dirac operator
    Zhong, Y.
    Gao, G. L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (04)
  • [12] SOME ESTIMATES FOR THE EIGENVALUES OF A PERTURBATION OPERATOR
    KUROCHKIN, SV
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (11-12): : 88 - 91
  • [13] Some Properties of Fuzzy Frame Operator
    Daraby, B.
    Delzendeh, F.
    Rahimi, A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2022, 12 (01): : 3 - 19
  • [14] Some semantic results about the  operator in Levesque's logic of belief
    苏开乐
    Science Bulletin, 1996, (12) : 1053 - 1054
  • [15] SOME RESULTS ABOUT BEURLING ALGEBRAS WITH APPLICATIONS TO OPERATOR-THEORY
    PEDERSEN, TV
    STUDIA MATHEMATICA, 1995, 115 (01) : 39 - 52
  • [16] SOME RESULTS ABOUT (K,R)-FREE INTEGERS
    HARDY, GE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (02): : A266 - A266
  • [17] Quasi-compact operator, pseudo-essential spectra and some perturbation results
    Charfi, Salma
    Rahali, Sassia
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (03): : 670 - 679
  • [18] *-K-operator frame for EndA*(H)
    Rossafi, Mohamed
    Kabbaj, Samir
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (03)
  • [19] Properties of Demicompact Operators, Essential Spectra and Some Perturbation Results for Block Operator Matrices with Applications
    Jeribi, Aref
    Krichen, Bilel
    Zitouni, Ali
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (12): : 2506 - 2522
  • [20] SOME PERTURBATION RESULTS FOR SEMIGROUPS
    JUNG, M
    ARCHIV DER MATHEMATIK, 1995, 64 (06) : 475 - 483