Some Results About the Operator Perturbation of a K-Frame

被引:0
|
作者
Man Jia
Yu-Can Zhu
机构
[1] Fuzhou University,Department of Mathematics
来源
Results in Mathematics | 2018年 / 73卷
关键词
-Frame; tight ; -frame; operator perturbation; 42C99;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we mainly study the stabilities of K-frames under the operator perturbation. Firstly, we provide several sufficient conditions of the operator perturbation for a K-frame by using a bounded linear operator T from H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_1}$$\end{document} to H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_2}$$\end{document}. We also give an equivalent characterization of the operator perturbation for a tight K-frame. Meanwhile, we correct two results which were obtained by Ramu. Lastly, we show that a K-frame can construct a T-frame by the perturbation of a bounded linear operator T. Our results generalize the remarkable results of the operator perturbation for a frame which were obtained by Casazza, Christensen, etc. when we take K=I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K = I$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Some Results About the Operator Perturbation of a K-Frame
    Jia, Man
    Zhu, Yu-Can
    RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [2] CHARACTERIZATION OF K-FRAME VECTORS AND K-FRAME GENERATOR MULTIPLIERS
    Javani, Somayeh
    Takhteh, Farkhondeh
    ADVANCES IN OPERATOR THEORY, 2019, 4 (03): : 587 - 603
  • [3] Some results about operator perturbation of fusion frames in Hilbert spaces
    Li, Xue-Bin
    Yang, Shou-Zhi
    Zhu, Yu-Can
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1417 - 1427
  • [4] K-frame expansions with probabilistic erasures
    He, Miao
    Leng, Jinsong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (01) : 147 - 154
  • [5] K-frame expansions with probabilistic erasures
    Miao He
    Jinsong Leng
    Signal, Image and Video Processing, 2022, 16 : 147 - 154
  • [6] SUM OF WOVEN FRAME AND WOVEN K-FRAME IN HILBERT SPACE
    Zhu, Feng-Juan
    Li, San-San
    Huang, Yong-Dong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (03) : 527 - 537
  • [7] Probability Modeled Optimal K-Frame for Erasures
    Miao, He
    Leng, Jinsong
    Yu, Jiali
    Li, Dongwei
    IEEE ACCESS, 2018, 6 : 54507 - 54515
  • [8] On K-frame generators for unitary systems in Hilbert C*-modules
    Xiang, Zhong-Qi
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2021, 12 (01)
  • [9] Better bounds for online k-frame throughput maximization in network switches
    Kawahara, Jun
    Kobayashi, Koji M.
    Miyazaki, Shuichi
    THEORETICAL COMPUTER SCIENCE, 2017, 657 : 173 - 190
  • [10] Better Bounds for Online k-Frame Throughput Maximization in Network Switches
    Kawahara, Jun
    Kobayashi, Koji M.
    Miyazaki, Shuichi
    ALGORITHMS AND COMPUTATION, 2013, 8283 : 218 - 228