Weak solvability of the generalized Voigt viscoelasticity model

被引:0
|
作者
V. P. Orlov
D. A. Rode
M. A. Pliev
机构
[1] Voronezh State University,
[2] Institute of Mathematics,undefined
[3] Voronezh State University,undefined
[4] Southern Mathematical Institute,undefined
[5] Russia Peoples’ Friendship University of Russia,undefined
来源
关键词
viscoelastic medium; motion equations; initial boundary value problem; weak solution; Voigt viscoelasticity model; fractional derivative;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence and uniqueness of a weak solution to an initial boundary value problem for the system of the motion equations of a fluid that is a fractional analog of the Voigt viscoelasticity model. The rheological equation of the model contains fractional derivatives.
引用
收藏
页码:859 / 874
页数:15
相关论文
共 50 条
  • [41] On Solvability of an Initial-Boundary Value Problem for a Viscoelasticity Model with Fractional Derivatives
    Zvyagin, V. G.
    Orlov, V. P.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (06) : 1073 - 1089
  • [42] ON EXISTENCE OF A CLASSICAL SOLUTION TO A GENERALIZED KELVIN-VOIGT MODEL
    Bulicek, Miroslav
    Kaplicky, Petr
    Steinhauer, Mark
    PACIFIC JOURNAL OF MATHEMATICS, 2013, 262 (01) : 11 - 33
  • [43] Study of Kelvin-Voigt Models Arising in Viscoelasticity
    Davydov, A. V.
    Tikhonov, Yu. A.
    DIFFERENTIAL EQUATIONS, 2018, 54 (12) : 1620 - 1635
  • [44] PULLBACK ATTRACTORS FOR WEAK SOLUTION TO MODIFIED KELVIN-VOIGT MODEL
    Turbin, Mikhail
    Ustiuzhaninova, Anastasiia
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 2055 - 2072
  • [45] Investigation of Weak Solvability of One Model Nonlinear Viscosity Fluid
    E. I. Kostenko
    Lobachevskii Journal of Mathematics, 2024, 45 (4) : 1421 - 1441
  • [46] Modified Kelvin-Voigt fractional derivative model for viscoelasticity measurement in optical coherence elastography
    杨晨铭
    李中梁
    南楠
    刘腾
    罗耀丽
    王向朝
    Chinese Optics Letters, 2025, 23 (01) : 98 - 106
  • [47] Investigation of the Weak Solvability of One Fractional Model with Infinite Memory
    Zvyagin, V. G.
    Kostenko, E. I.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (03) : 969 - 988
  • [48] Investigation of the Weak Solvability of One Fractional Model with Infinite Memory
    V. G. Zvyagin
    E. I. Kostenko
    Lobachevskii Journal of Mathematics, 2023, 44 : 969 - 988
  • [49] Solvability of a stationary model of motion of weak aqueous polymer solutions
    Zvyagin A.V.
    Russian Mathematics, 2011, 55 (2) : 90 - 92
  • [50] Modified Kelvin-Voigt fractional derivative model for viscoelasticity measurement in optical coherence elastography
    Yang, Chenming
    Li, Zhongliang
    Nan, Nan
    Liu, Teng
    Luo, Yaoli
    Wang, Xiangzhao
    CHINESE OPTICS LETTERS, 2025, 23 (01)