Mean Residual Life Processes and Associated Submartingales

被引:0
|
作者
Antoine-Marie Bogso
机构
[1] University of Yaounde I,Department of Mathematics
来源
关键词
Cox–Hobson algorithm; Incomplete Markov processes; MRL ordering; Two-parameter submartingales; Total positivity; 60E15; 60G44; 60J25; 32F17;
D O I
暂无
中图分类号
学科分类号
摘要
We use an argument of Madan and Yor to construct associated submartingales to a class of two-parameter processes that are ordered by increasing convex dominance. This class includes processes whose integrated survival functions are multivariate totally positive of order 2 (MTP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MTP}_2$$\end{document}). We prove that the integrated survival function of an integrable two-parameter process is MTP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MTP}_2$$\end{document} if and only if it is totally positive of order 2 (TP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {TP}_2$$\end{document}) in each pair of arguments when the remaining argument is fixed. This result cannot be deduced from known results since there are several two-parameter processes whose integrated survival functions do not have interval support. Since the MTP2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {MTP}_2$$\end{document} property is closed under several transformations, it allows us to exhibit many other processes having the same total positivity property.
引用
收藏
页码:36 / 64
页数:28
相关论文
共 50 条
  • [31] On the Mixture Proportional Mean Residual Life Model
    Rezaei, Majid
    Gholizadeh, Behzad
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (20) : 4263 - 4277
  • [32] ON TESTING FOR DECREASING MEAN RESIDUAL LIFE ORDERING
    ALY, EEAA
    NAVAL RESEARCH LOGISTICS, 1993, 40 (05) : 633 - 642
  • [33] On generalized mean residual life of record values
    Kundu, Chanchal
    Nanda, Asok K.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (9-10) : 797 - 806
  • [34] A NEW TEST FOR MEAN RESIDUAL LIFE TIMES
    AHMAD, IA
    BIOMETRIKA, 1992, 79 (02) : 416 - 419
  • [35] General proportional mean residual life model
    Kayid, Mohamed
    Izadkhah, Salman
    ALmufarrej, Dalal
    APPLICATIONS OF MATHEMATICS, 2016, 61 (05) : 607 - 622
  • [36] Some results on discrete mean residual life
    Penn State, Erie, United States
    IEEE Trans Reliab, 3 (359-361):
  • [37] General proportional mean residual life model
    Mohamed Kayid
    Salman Izadkhah
    Dalal ALmufarrej
    Applications of Mathematics, 2016, 61 : 607 - 622
  • [38] DYNAMIC MULTIVARIATE MEAN RESIDUAL LIFE FUNCTIONS
    SHAKED, M
    SHANTHIKUMAR, JG
    JOURNAL OF APPLIED PROBABILITY, 1991, 28 (03) : 613 - 629
  • [39] EFFECT OF BURN-IN ON MEAN RESIDUAL LIFE
    PARK, KS
    IEEE TRANSACTIONS ON RELIABILITY, 1985, 34 (05) : 522 - 523
  • [40] On upshifted reversed mean residual life order
    Nanda, Asok K.
    Bhattacharjee, Subarna
    Alam, S. S.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (08) : 1513 - 1523