Monotonicity of the matrix geometric mean

被引:1
|
作者
Rajendra Bhatia
Rajeeva L. Karandikar
机构
[1] Indian Statistical Institute,
[2] Chennai Mathematical Institute,undefined
来源
Mathematische Annalen | 2012年 / 353卷
关键词
15B48; 47A64; 53C20;
D O I
暂无
中图分类号
学科分类号
摘要
An attractive candidate for the geometric mean of m positive definite matrices A1, . . . , Am is their Riemannian barycentre G. One of its important operator theoretic properties, monotonicity in the m arguments, has been established recently by Lawson and Lim. We give an elementary proof of this property using standard matrix analysis and some counting arguments. We derive some new inequalities for G. One of these says that, for any unitarily invariant norm, ||| G ||| is not bigger than the geometric mean of |||A1|||, . . . , |||Am|||.
引用
收藏
页码:1453 / 1467
页数:14
相关论文
共 50 条
  • [1] Monotonicity of the matrix geometric mean
    Bhatia, Rajendra
    Karandikar, Rajeeva L.
    MATHEMATISCHE ANNALEN, 2012, 353 (04) : 1453 - 1467
  • [2] Matrix Wielandt inequality via the matrix geometric mean
    Fujimoto, Masayuki
    Seo, Yuki
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (08): : 1564 - 1577
  • [3] MATRIX OSTROWSKI INEQUALITY VIA THE MATRIX GEOMETRIC MEAN
    Nakayama, Ryosuke
    Seo, Yuki
    Tojo, Reo
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 1375 - 1382
  • [4] A geometric mean inequality and some monotonicity results for the q-gamma function
    Elezovic, N
    Giordano, C
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (02): : 253 - 258
  • [5] MATRIX RICHARD INEQUALITY VIA THE GEOMETRIC MEAN
    Fujimoto, Masayuki
    Seo, Yuki
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (01): : 107 - 111
  • [6] Norm inequalities related to the matrix geometric mean
    Bhatia, Rajendra
    Grover, Priyanka
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) : 726 - 733
  • [7] EXTENSION OF BLOCK MATRIX REPRESENTATION OF THE GEOMETRIC MEAN
    Choi, Hana
    Choi, Hayoung
    Kim, Sejong
    Lee, Hosoo
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (03) : 641 - 653
  • [8] Remarks on the matrix arithmetic-geometric mean inequality
    Bhatia, Rajendra
    ACTA SCIENTIARUM MATHEMATICARUM, 2024, : 409 - 418
  • [9] Continued fraction expansion of the geometric matrix mean and applications
    Raïssouli, M
    Leazizi, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 359 : 37 - 57
  • [10] Some matrix equations involving the weighted geometric mean
    Trung Hoa Dinh
    Cong Trinh Le
    Xuan Dai Le
    Tuan Cuong Pham
    Advances in Operator Theory, 2022, 7