Norm inequalities related to the matrix geometric mean

被引:42
|
作者
Bhatia, Rajendra [1 ]
Grover, Priyanka [1 ]
机构
[1] Indian Stat Inst, Delhi Ctr, New Delhi 110016, India
关键词
Matrix inequalities; Geometric mean; Binomial mean; Log Euclidean mean; Golden-Thompson inequality; Positive definite matrices;
D O I
10.1016/j.laa.2012.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Inequalities for norms of different versions of the geometric mean of two positive definite matrices are presented. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 50 条
  • [1] On norm inequalities related to the geometric mean
    Freewan, Shaima'a
    Hayajneh, Mostafa
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 670 : 104 - 120
  • [2] ON A CONJECTURE RELATED TO THE GEOMETRIC MEAN AND NORM INEQUALITIES
    Freewan, ShaimA'A
    Hayajneh, Mostafa
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (01): : 193 - 200
  • [3] Norm inequalities related to the arithmetic–geometric mean inequalities for positive semidefinite matrices
    Mostafa Hayajneh
    Saja Hayajneh
    Fuad Kittaneh
    Positivity, 2018, 22 : 1311 - 1324
  • [4] Norm inequalities related to the arithmetic-geometric mean inequalities for positive semidefinite matrices
    Hayajneh, Mostafa
    Hayajneh, Saja
    Kittaneh, Fuad
    POSITIVITY, 2018, 22 (05) : 1311 - 1324
  • [5] The arithmetic-geometric-harmonic-mean and related matrix inequalities
    Alic, M.
    Mond, B.
    Pecaric, J.
    Volenec, V.
    Linear Algebra and Its Applications, 1997, 264 (1-3): : 55 - 62
  • [6] The arithmetic-geometric-harmonic-mean and related matrix inequalities
    Alic, M
    Mond, B
    Pecaric, J
    Volenec, V
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 264 : 55 - 62
  • [7] Some Refinements for the Arithmetic–Geometric Mean and Cauchy–Schwarz Matrix Norm Interpolating Inequalities
    Ali Taghavi
    Tahere Azimi Roushan
    Vahid Darvish
    Bulletin of the Iranian Mathematical Society, 2018, 44 : 927 - 936
  • [8] INTERPOLATING BETWEEN THE ARITHMETIC-GEOMETRIC MEAN AND CAUCHY-SCHWARZ MATRIX NORM INEQUALITIES
    Audenaert, Koenraad M. R.
    OPERATORS AND MATRICES, 2015, 9 (02): : 475 - 479
  • [9] Arithmetic-Geometric Mean and Related Submajorisation and Norm Inequalities for τ-Measurable operators: Part I
    Dodds, P. G.
    Dodds, T. K.
    Sukochev, F. A.
    Zanin, D.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (03)
  • [10] Arithmetic-Geometric Mean and Related Submajorisation and Norm Inequalities for τ-Measurable Operators: Part II
    Dodds, P. G.
    Dodds, T. K.
    Sukochev, F. A.
    Zanin, D.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (04)