35J05;
30G35;
30A99;
Several complex variables;
Clifford analysis;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Radó’s theorem for holomorphic functions asserts that if a continuous function is holomorphic on the complement of its zero locus, then it is holomorphic everywhere. We prove in this paper an equivalent theorem for functions lying in the kernel of a first order differential operator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{D}}$$\end{document} such that the Helmholtz operator ∇2+λ can be factorized as the composition \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widehat{\mathcal{D}}\mathcal{D}}$$\end{document} . We also analyse the factorisations \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widehat{\mathcal{D}}\mathcal{D}}$$\end{document} of the Laplace and Helmholtz operators associated to the Clifford analysis and the representations of holomorphic function of several complex variables.
机构:
Univ Picardie, Dept Math, 33 Rue St Leu, F-80039 Amiens 1, France
Univ Picardie, LAMFA UMR CNRS 7352, 33 Rue St Leu, F-80039 Amiens 1, FranceUniv Picardie, Dept Math, 33 Rue St Leu, F-80039 Amiens 1, France