Directional short-time Fourier transform of distributions

被引:0
|
作者
Katerina Hadzi-Velkova Saneva
Sanja Atanasova
机构
[1] Ss. Cyril and Methodius University,Faculty of Electrical Engineering and Information Technologies
关键词
directional short-time Fourier transform; Radon transform; short-time Fourier transform; distributions; 44A15; 46F12; 42C20; 44A12; 46F10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the directional short-time Fourier transform (DSTFT) that was introduced and investigated in (Giv in J. Math. Anal. Appl. 399:100-107, 2013). We analyze the DSTFT and its transpose on test function spaces S(Rn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {S}(\mathbb {R}^{n})$\end{document} and S(Y2n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {S}(\mathbb {Y}^{2n})$\end{document}, respectively, and prove the continuity theorems on these spaces. Then the obtained results are used to extend the DSTFT to spaces of distributions.
引用
收藏
相关论文
共 50 条
  • [31] Planar Sampling Sets for the Short-Time Fourier Transform
    Jaming, Philippe
    Speckbacher, Michael
    [J]. CONSTRUCTIVE APPROXIMATION, 2021, 53 (03) : 479 - 502
  • [32] Short-time quadratic-phase Fourier transform
    Shah, Firdous A.
    Lone, Waseem Z.
    Tantary, Azhar Y.
    [J]. OPTIK, 2021, 245
  • [33] Optimal short-time Fourier transform for monocomponent signals
    Güven, HE
    [J]. PROCEEDINGS OF THE IEEE 12TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, 2004, : 312 - 315
  • [34] Short-Time Fractional Fourier Transform and Its Applications
    Tao, Ran
    Li, Yan-Lei
    Wang, Yue
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (05) : 2568 - 2580
  • [35] Short-time Fourier transform laser Doppler holography
    Samson, B.
    Atlan, M.
    [J]. JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2013, 8
  • [36] Learning to short-time Fourier transform in spectrum sensing
    Zhou, Longmei
    Sun, Zhuo
    Wang, Wenbo
    [J]. PHYSICAL COMMUNICATION, 2017, 25 : 420 - 425
  • [37] Using short-time Fourier Transform in machinery diagnosis
    Safizadeh, MS
    Lakis, AA
    Thomas, M
    [J]. COMADEM '99, PROCEEDINGS, 1999, : 125 - 130
  • [38] Blind Phaseless Short-Time Fourier Transform Recovery
    Bendory, Tamir
    Edidin, Dan
    Eldar, Yonina C.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 3232 - 3241
  • [39] Uncertainty principles for the short-time Fourier transform on the lattice
    Poria, Anirudha
    Dasgupta, Aparajita
    [J]. MATHEMATISCHE NACHRICHTEN, 2024, 297 (04) : 1501 - 1518
  • [40] The Faber–Krahn inequality for the short-time Fourier transform
    Fabio Nicola
    Paolo Tilli
    [J]. Inventiones mathematicae, 2022, 230 : 1 - 30