The Most Unstable Profiles of a Plane-Parallel Flow in a Channel

被引:0
|
作者
Vladimir A. Gordin
机构
[1] Hydrometeorological Center of Russia,
来源
Meccanica | 2000年 / 35卷
关键词
Increment; Rayleigh equation; Enstrophy; Maximization; Incompressible flow;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known (after Rayleigh) that a plan-parallel flow in a channel can be unstable only if the basic velocity profile U(z) possesses inflection points. The profile determines (via the Rayleigh equation) the maximal increment ∣αci∣ of small perturbations and 'eigenvalues' c (see Equation (1)). The increment and the imaginary parts ci of the eigenvalues c provide a quantitative characterization of the basic stability properties of the flow. Here we find some best possible bounds for these values. The bounds are determined by the following parameters: wave number α; enstrophy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$1/2\int_0^L {[U'(z)]^2 } {\text{d}}z$$ \end{document} of the basic flow; width of the channel L. A similar approach can be applied to models of atmosphere, ocean, plasma etc.
引用
收藏
页码:39 / 53
页数:14
相关论文
共 50 条