Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

被引:0
|
作者
Guanghui Lu
Shuangping Tao
机构
[1] Northwest Normal University,College of Mathematics and Statistics
关键词
42B35; 47B47; 30L99; non-homogeneous metric measure space; fractional type Marcinkiewicz integral; Lebesgue space; Hardy space;
D O I
暂无
中图分类号
学科分类号
摘要
The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integral Mβ,ρ,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}_{\beta,\rho,q}$\end{document} on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel satisfies a certain Hörmander-type condition, the authors prove that Mβ,ρ,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}_{\beta,\rho,q}$\end{document} is bounded from Lebesgue space L1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{1}(\mu)$\end{document} into the weak Lebesgue space L1,∞(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{1,\infty}(\mu)$\end{document}, from the Lebesgue space L∞(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty}(\mu)$\end{document} into the space RBLO(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname{RBLO}(\mu)$\end{document}, and from the atomic Hardy space H1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(\mu)$\end{document} into the Lebesgue space L1(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{1}(\mu)$\end{document}. Moreover, the authors also get a corollary, that is, Mβ,ρ,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{M}_{\beta,\rho,q}$\end{document} is bounded on Lp(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}(\mu)$\end{document} with 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< p<\infty$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces
    Lu, Guanghui
    Tao, Shuangping
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [2] Fractional Type Marcinkiewicz Commutators Over Non-Homogeneous Metric Measure Spaces
    G. Lu
    S. Tao
    [J]. Analysis Mathematica, 2019, 45 : 87 - 110
  • [3] Fractional Type Marcinkiewicz Commutators Over Non-Homogeneous Metric Measure Spaces
    Lu, G.
    Tao, S.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (01) : 87 - 110
  • [4] BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HARDY SPACES Hp OVER NON-HOMOGENEOUS METRIC MEASURE SPACES
    Li, Haoyuan
    Lin, Haibo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 347 - 364
  • [5] The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces
    Cao Yonghui
    Zhou Jiang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [6] The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces
    Cao Yonghui
    Zhou Jiang
    [J]. Journal of Inequalities and Applications, 2015
  • [7] Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces
    Lin HaiBo
    Yang DaChun
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (01) : 123 - 144
  • [8] Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces
    HaiBo Lin
    DaChun Yang
    [J]. Science China Mathematics, 2014, 57 : 123 - 144
  • [9] Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces
    LIN HaiBo
    YANG DaChun
    [J]. Science China Mathematics, 2014, 57 (01) : 123 - 144
  • [10] GENERALIZED FRACTIONAL INTEGRALS AND THEIR COMMUTATORS OVER NON-HOMOGENEOUS METRIC MEASURE SPACES
    Fu, Xing
    Yang, Dachun
    Yuan, Wen
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 509 - 557