A Mechanistic Pore-Scale Analysis of the Low-Salinity Effect in Heterogeneously Wetted Porous Media

被引:0
|
作者
Michael G. Watson
Steven R. McDougall
机构
[1] University of Sydney,School of Mathematics and Statistics
[2] Heriot-Watt University,Institute of GeoEnergy Engineering
来源
Transport in Porous Media | 2020年 / 135卷
关键词
Pore network modelling; Two-phase flow; Low-salinity waterflooding; Wettability modification; Enhanced oil recovery;
D O I
暂无
中图分类号
学科分类号
摘要
Low-salinity (LS) waterflooding has been a topic of substantial recent interest in the petroleum industry. Studies have shown that LS brine injection can increase oil production relative to high-salinity (HS) brine injection, but contradictory results have also been reported and a mechanistic explanation of these findings remains elusive. We have recently developed a pore-scale model of LS brine injection in uniformly wetted networks (Watson et al. in Transp Porous Med 118:201–223, 2017), and we extend this approach here to investigate the low-salinity effect (LSE) in heterogeneously wetted media. We couple a steady-state fluid displacement model to an innovative tracer algorithm and track the evolving salinity front as oil and HS brine are displaced from the network. The wettability of the pore structure is locally modified where water salinity falls below a critical threshold, and simulations show that this can have significant consequences for oil recovery. Our results demonstrate that, for heterogeneously wetted networks, the oil-wet (OW) pores are the only viable source of incremental oil by LS brine injection. Moreover, we show that a LS-induced increase in the displaced OW pore fraction is a necessary, but not sufficient, condition to guarantee additional oil production. Simulations further suggest that the initial OW pore fraction, the average network connectivity and the initial HS brine saturation are factors that can determine the extent of incremental oil recovery following LS brine injection. This study clearly highlights that the mechanisms of the LSE can be markedly different in uniformly wetted and in non-uniformly wetted porous media.
引用
收藏
页码:587 / 617
页数:30
相关论文
共 50 条
  • [41] Pore-scale dynamics for underground porous media hydrogen storage
    Lysyy, Maksim
    Ersland, Geir
    Fern, Martin
    ADVANCES IN WATER RESOURCES, 2022, 163
  • [42] Parallel simulations of pore-scale flow through porous media
    Morris, JP
    Zhu, Y
    Fox, PJ
    COMPUTERS AND GEOTECHNICS, 1999, 25 (04) : 227 - 246
  • [43] Characteristics of pore-scale events and their impact on transport in porous media
    Sin, Sotheavuth
    Susanto, Wilson
    Nasir, Muhammad
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [44] Pore-scale modeling of complex transport phenomena in porous media
    Chen, Li
    He, An
    Zhao, Jianlin
    Kang, Qinjun
    Li, Zeng-Yao
    Carmeliet, Jan
    Shikazono, Naoki
    Tao, Wen-Quan
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2022, 88
  • [45] Characterisation of reactive transport in pore-scale correlated porous media
    Liu, Min
    Mostaghimi, Peyman
    CHEMICAL ENGINEERING SCIENCE, 2017, 173 : 121 - 130
  • [46] Pore-scale dynamics of salt precipitation in drying porous media
    Rad, Mansoureh Norouzi
    Shokri, Nima
    Sahimi, Muhammad
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [47] A pore-scale numerical model for flow through porous media
    Zhu, Y
    Fox, PJ
    Morris, JP
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 1999, 23 (09) : 881 - 904
  • [48] PORE-SCALE MODELING OF NATURAL CONVECTION IN RECONSTRUCTED POROUS MEDIA
    Liu, Zhenyu
    Wu, Huiying
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2016, VOL 1, 2016,
  • [49] Pore-Scale Mixing and the Evolution of Hydrodynamic Dispersion in Porous Media
    Puyguiraud, Alexandre
    Gouze, Philippe
    Dentz, Marco
    PHYSICAL REVIEW LETTERS, 2021, 126 (16)
  • [50] Pore-scale investigations of permeability of saturated porous media: Pore structure efficiency
    Zhang, Zhun
    Zhang, Zhuo
    Lu, Wanjun
    Guo, Huirong
    Liu, Changling
    Ning, Fulong
    JOURNAL OF HYDROLOGY, 2024, 637