Composition operators on Hardy-Sobolev spaces and BMO-quasiconformal mappings

被引:0
|
作者
Menovschikov A. [1 ]
Ukhlov A. [2 ]
机构
[1] Sobolev Institute of Mathematics, Novosibirsk
[2] Department of Mathematics, Ben-Gurion University of the Negev, Beer Sheva
关键词
Quasiconformal mappings; Sobolev spaces;
D O I
10.1007/s10958-021-05549-2
中图分类号
学科分类号
摘要
In this paper, we consider composition operators on Hardy-Sobolev spaces in connections with BMO-quasiconformal mappings. Using the duality of Hardy spaces and BMO-spaces, we prove that BMO-quasiconformal mappings generate bounded composition operators from Hardy–Sobolev spaces to Sobolev spaces. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:313 / 325
页数:12
相关论文
共 50 条
  • [21] Weighted Sobolev spaces and quasiconformal mappings
    Vodop'yanov, SK
    Ukhlov, AD
    [J]. DOKLADY MATHEMATICS, 2005, 72 (01) : 561 - 566
  • [22] Hardy Spaces for Quasiregular Mappings and Composition Operators
    Adamowicz, Tomasz
    Gonzalez, Maria J.
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 11417 - 11427
  • [23] Fredholmness of multipliers on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 1 - 10
  • [24] Hardy Spaces for Quasiregular Mappings and Composition Operators
    Tomasz Adamowicz
    María J. González
    [J]. The Journal of Geometric Analysis, 2021, 31 : 11417 - 11427
  • [25] On uniform boundedness of dyadic averaging operators in spaces of Hardy-Sobolev type
    Garrigs, G.
    Seeger, A.
    Ullrich, T.
    [J]. ANALYSIS MATHEMATICA, 2017, 43 (02) : 267 - 278
  • [26] Weighted Hardy Spaces of Quasiconformal Mappings
    Benedict, Sita
    Koskela, Pekka
    Li, Xining
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [27] Abstract Hardy-Sobolev spaces and interpolation
    Badr, Nadine
    Bernicot, Frederic
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (05) : 1169 - 1208
  • [28] Weighted Hardy Spaces of Quasiconformal Mappings
    Sita Benedict
    Pekka Koskela
    Xining Li
    [J]. The Journal of Geometric Analysis, 2022, 32
  • [29] TANGENTIAL CHARACTERIZATIONS OF HARDY-SOBOLEV SPACES
    COHN, WS
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (04) : 1221 - 1249
  • [30] Atomic decomposition on Hardy-Sobolev spaces
    Cho, Yong-Kum
    Kim, Joonil
    [J]. STUDIA MATHEMATICA, 2006, 177 (01) : 25 - 42