In this paper, we study superconvergence properties of the local discontinuous Galerkin (LDG) methods for solving nonlinear convection-diffusion equations in one space dimension. The main technicality is an elaborate estimate to terms involving projection errors. By introducing a new projection and constructing some correction functions, we prove the (2k+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(2k+1)$$\end{document}th order superconvergence for the cell averages and the numerical flux in the discrete L2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^2$$\end{document} norm with polynomials of degree k≥1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k\ge 1$$\end{document}, no matter whether the flow direction f′(u)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f'(u)$$\end{document} changes or not. Superconvergence of order k+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k +2$$\end{document} (k+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k +1$$\end{document}) is obtained for the LDG error (its derivative) at interior right (left) Radau points, and the convergence order for the error derivative at Radau points can be improved to k+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k+2$$\end{document} when the direction of the flow doesn’t change. Finally, a supercloseness result of order k+2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$k+2$$\end{document} towards a special Gauss–Radau projection of the exact solution is shown. The superconvergence analysis can be extended to the generalized numerical fluxes and the mixed boundary conditions. All theoretical findings are confirmed by numerical experiments.
机构:
Suzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R ChinaSuzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
Cheng, Y. A. O.
Jiang, S. H. A. N.
论文数: 0引用数: 0
h-index: 0
机构:
Nantong Univ, Sch Sci, Nantong 226019, Jiangsu, Peoples R ChinaSuzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
Jiang, S. H. A. N.
Stynes, M. A. R. T. I. N.
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Appl & Computat Math Div, Beijing 100193, Peoples R ChinaSuzhou Univ Sci & Technol, Sch Math Sci, Suzhou 215009, Jiangsu, Peoples R China
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R ChinaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Cao, Waixiang
Shu, Chi-Wang
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Div Appl Math, Providence, RI 02912 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Shu, Chi-Wang
Yang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Michigan Technol Univ, Dept Math Sci, Houghton, MI 49931 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Yang, Yang
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China