Mitigating cross-client GANs-based attack in federated learning

被引:0
|
作者
Hong Huang
Xinyu Lei
Tao Xiang
机构
[1] Chongqing University,College of Computer Science
[2] Michigan Technological University,Department of Computer Science
来源
Multimedia Tools and Applications | 2024年 / 83卷
关键词
Federated learning; Privacy preserving; GANs; Ensemble learning; Knowledge distillation;
D O I
暂无
中图分类号
学科分类号
摘要
Machine learning makes multimedia data (e.g., images) more attractive, however, multimedia data is usually distributed and privacy sensitive. Multiple distributed multimedia clients can resort to federated learning (FL) to jointly learn a global shared model without requiring to share their private samples with any third-party entities. In this paper, we show that FL suffers from the cross-client generative adversarial networks (GANs)-based (C-GANs) attack, in which a malicious client (i.e., adversary) can reconstruct samples with the same distribution as the training samples from other clients (i.e., victims). Since a benign client’s data can be leaked to the adversary, this attack brings the risk of local data leakage for clients in many security-critical FL applications. Thus, we propose Fed-EDKD (i.e., Federated Ensemble Data-free Knowledge Distillation) technique to improve the current popular FL schemes to resist C-GANs attack. In Fed-EDKD, each client submits a local model to the server for obtaining an ensemble global model. Then, to avoid model expansion, Fed-EDKD adopts data-free knowledge distillation techniques to transfer knowledge from the ensemble global model to a compressed model. By this way, Fed-EDKD reduces the adversary’s control capability over the global model, so Fed-EDKD can effectively mitigate C-GANs attack. Finally, the experimental results demonstrate that Fed-EDKD significantly mitigates C-GANs attack while only incurring a slight accuracy degradation of FL.
引用
收藏
页码:10925 / 10949
页数:24
相关论文
共 50 条
  • [31] Client Selection Based on Label Quantity Information for Federated Learning
    Ma, Jiahua
    Sun, Xinghua
    Xia, Wenchao
    Wang, Xijun
    Chen, Xiang
    Zhu, Hongbo
    2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
  • [32] Optimal Client Selection of Federated Learning Based on Compressed Sensing
    Li, Qing
    Lyu, Shanxiang
    Wen, Jinming
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1679 - 1694
  • [33] Enhancing Federated Learning With Pattern-Based Client Clustering
    Gao, Yuan
    Lin, Ziyue
    Gong, Maoguo
    Zhang, Yuanqiao
    Zhang, Yihong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (24): : 40365 - 40375
  • [34] Auction-based client selection for online Federated Learning
    Guo, Juncai
    Su, Lina
    Liu, Jin
    Ding, Jianli
    Liu, Xiao
    Huang, Bo
    Li, Li
    INFORMATION FUSION, 2024, 112
  • [35] Federated learning client selection algorithm based on gradient similarity
    Hu, Lingxi
    Hu, Yuanyuan
    Jiang, Linhua
    Long, Wei
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [36] Blockchain-based Secure Client Selection in Federated Learning
    Nguyen, Truc
    Thai, Phuc
    Jeter, Tre R.
    Dinht, Thang N.
    Thai, My T.
    2022 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (IEEE ICBC 2022), 2022,
  • [37] FedBoost: Bayesian Estimation Based Client Selection for Federated Learning
    Sheng, Yuhang
    Zeng, Lingguo
    Cao, Shuqin
    Dai, Qing
    Yang, Shasha
    Lu, Jianfeng
    IEEE ACCESS, 2024, 12 : 52255 - 52266
  • [38] A Client Selection Method Based on Loss Function Optimization for Federated Learning
    Zeng, Yan
    Teng, Siyuan
    Xiang, Tian
    Zhang, Jilin
    Mu, Yuankai
    Ren, Yongjian
    Wan, Jian
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 137 (01): : 1047 - 1064
  • [39] GraphCS: Graph-based client selection for heterogeneity in federated learning
    Chang, Tao
    Li, Li
    Wu, MeiHan
    Yu, Wei
    Wang, Xiaodong
    Xu, ChengZhong
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2023, 177 : 131 - 143
  • [40] Client selection based weighted federated few-shot learning
    Xu, Xinlei
    Niu, Saisai
    Zhe, Wanga
    Li, Dongdong
    Yang, Hai
    Du, Wenli
    APPLIED SOFT COMPUTING, 2022, 128