Linear Regression Models with Incomplete Categorical Covariates

被引:0
|
作者
Helge Toutenburg
Thomas Nittner
机构
[1] Ludwig-Maximilians-Universität München,Institut für Statistik
来源
Computational Statistics | 2002年 / 17卷
关键词
binary variables; imputation; incomplete data; logistic regression; simulation experiment;
D O I
暂无
中图分类号
学科分类号
摘要
We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the so-called pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to one independent binary variable: complete case analysis, zero order regression, categorical zero order regression, pi imputation, single imputation, multiple imputation, modified first order regression. After a brief theoretical description of the simulation experiment, MSE-ratio, variance and bias are used to illustrate differences within and between the approaches.
引用
收藏
页码:215 / 232
页数:17
相关论文
共 50 条
  • [1] Linear regression models with incomplete categorical covariates
    Toutenburg, H
    Nittner, T
    [J]. COMPUTATIONAL STATISTICS, 2002, 17 (02) : 215 - 232
  • [2] ESTIMATION OF PARAMETERS IN UNCONDITIONAL CATEGORICAL REGRESSION MODELS WITH INCOMPLETE DATA IN COVARIATES
    Azam, K.
    Grami, A.
    Mohammad, K.
    Jandaghi, G. H.
    Karimlou, M.
    Kazemnejad, A.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2007, 7 (02) : 281 - 290
  • [3] Joint regression modeling for missing categorical covariates in generalized linear models
    Carlos Perez-Ruiz, Luis
    Escarela, Gabriel
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (15) : 2741 - 2759
  • [4] Conditional and unconditional categorical regression models with missing covariates
    Satten, GA
    Carroll, RJ
    [J]. BIOMETRICS, 2000, 56 (02) : 384 - 388
  • [5] Incomplete covariates data in generalized linear models
    Chen, YH
    Chen, H
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 79 (02) : 247 - 258
  • [6] A conditional model for incomplete covariates in parametric regression models
    Lipsitz, SR
    Ibrahim, JG
    [J]. BIOMETRIKA, 1996, 83 (04) : 916 - 922
  • [7] Estimating the linear regression model with categorical covariates subject to randomized response
    van den Hout, A
    Kooiman, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) : 3311 - 3323
  • [8] Inference in Linear Regression Models with Many Covariates and Heteroscedasticity
    Cattaneo, Matias D.
    Jansson, Michael
    Newey, Whitney K.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) : 1350 - 1361
  • [9] Variable selection for linear regression models with random covariates
    Nkiet, GM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1105 - 1110
  • [10] Likelihood methods for incomplete longitudinal binary responses with incomplete categorical covariates
    Lipsitz, SR
    Ibrahim, JG
    Fitzmaurice, GM
    [J]. BIOMETRICS, 1999, 55 (01) : 214 - 223