We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the so-called pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to one independent binary variable: complete case analysis, zero order regression, categorical zero order regression, pi imputation, single imputation, multiple imputation, modified first order regression. After a brief theoretical description of the simulation experiment, MSE-ratio, variance and bias are used to illustrate differences within and between the approaches.
机构:
Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, MexicoUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
Carlos Perez-Ruiz, Luis
Escarela, Gabriel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, MexicoUniv Autonoma Metropolitana Iztapalapa, Dept Matemat, Av San Rafael Atlixco 186, Mexico City 09340, DF, Mexico