Linear regression models with incomplete categorical covariates

被引:8
|
作者
Toutenburg, H [1 ]
Nittner, T [1 ]
机构
[1] Univ Munich, Inst Stat, D-80539 Munich, Germany
关键词
binary variables; imputation; incomplete data; logistic regression; simulation experiment;
D O I
10.1007/s001800200103
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present three different methods based on the conditional mean imputation when binary explanatory variables are incomplete. Apart from the single imputation and multiple imputation especially the so-called pi imputation is presented as a new procedure. Seven procedures are compared in a simulation experiment when missing data are confined to one independent binary variable: complete case analysis, zero order regression, categorical zero order regression, pi imputation, single imputation, multiple imputation, modified first order regression. After a brief theoretical description of the simulation experiment, MSE-ratio, variance and bias are used to illustrate differences within and between the approaches.
引用
收藏
页码:215 / 232
页数:18
相关论文
共 50 条
  • [1] Linear Regression Models with Incomplete Categorical Covariates
    Helge Toutenburg
    Thomas Nittner
    [J]. Computational Statistics, 2002, 17 : 215 - 232
  • [2] ESTIMATION OF PARAMETERS IN UNCONDITIONAL CATEGORICAL REGRESSION MODELS WITH INCOMPLETE DATA IN COVARIATES
    Azam, K.
    Grami, A.
    Mohammad, K.
    Jandaghi, G. H.
    Karimlou, M.
    Kazemnejad, A.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2007, 7 (02) : 281 - 290
  • [3] Joint regression modeling for missing categorical covariates in generalized linear models
    Carlos Perez-Ruiz, Luis
    Escarela, Gabriel
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (15) : 2741 - 2759
  • [4] Conditional and unconditional categorical regression models with missing covariates
    Satten, GA
    Carroll, RJ
    [J]. BIOMETRICS, 2000, 56 (02) : 384 - 388
  • [5] Incomplete covariates data in generalized linear models
    Chen, YH
    Chen, H
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 79 (02) : 247 - 258
  • [6] A conditional model for incomplete covariates in parametric regression models
    Lipsitz, SR
    Ibrahim, JG
    [J]. BIOMETRIKA, 1996, 83 (04) : 916 - 922
  • [7] Estimating the linear regression model with categorical covariates subject to randomized response
    van den Hout, A
    Kooiman, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (11) : 3311 - 3323
  • [8] Inference in Linear Regression Models with Many Covariates and Heteroscedasticity
    Cattaneo, Matias D.
    Jansson, Michael
    Newey, Whitney K.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (523) : 1350 - 1361
  • [9] Variable selection for linear regression models with random covariates
    Nkiet, GM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1105 - 1110
  • [10] Likelihood methods for incomplete longitudinal binary responses with incomplete categorical covariates
    Lipsitz, SR
    Ibrahim, JG
    Fitzmaurice, GM
    [J]. BIOMETRICS, 1999, 55 (01) : 214 - 223