A deep learning method for HLA imputation and trans-ethnic MHC fine-mapping of type 1 diabetes

被引:0
|
作者
Tatsuhiko Naito
Ken Suzuki
Jun Hirata
Yoichiro Kamatani
Koichi Matsuda
Tatsushi Toda
Yukinori Okada
机构
[1] Osaka University Graduate School of Medicine,Department of Statistical Genetics
[2] The University of Tokyo,Department of Neurology, Graduate School of Medicine
[3] Pharmaceutical Discovery Research Laboratories,Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences
[4] Teijin Pharma Limited,Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences
[5] The University of Tokyo,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI
[6] The University of Tokyo,IFReC)
[7] Osaka University,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives
[8] Osaka University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Conventional human leukocyte antigen (HLA) imputation methods drop their performance for infrequent alleles, which is one of the factors that reduce the reliability of trans-ethnic major histocompatibility complex (MHC) fine-mapping due to inter-ethnic heterogeneity in allele frequency spectra. We develop DEEP*HLA, a deep learning method for imputing HLA genotypes. Through validation using the Japanese and European HLA reference panels (n = 1,118 and 5,122), DEEP*HLA achieves the highest accuracies with significant superiority for low-frequency and rare alleles. DEEP*HLA is less dependent on distance-dependent linkage disequilibrium decay of the target alleles and might capture the complicated region-wide information. We apply DEEP*HLA to type 1 diabetes GWAS data from BioBank Japan (n = 62,387) and UK Biobank (n = 354,459), and successfully disentangle independently associated class I and II HLA variants with shared risk among diverse populations (the top signal at amino acid position 71 of HLA-DRβ1; P = 7.5 × 10−120). Our study illustrates the value of deep learning in genotype imputation and trans-ethnic MHC fine-mapping.
引用
收藏
相关论文
共 49 条
  • [21] High-density imputation and trans-ethnic association analysis reveals a novel locus for type 2 diabetes susceptibility
    Morris, A. P.
    DIABETOLOGIA, 2015, 58 : S89 - S90
  • [22] Trans-Ethnic Fine-Mapping of Lipid Loci Identifies Population-Specific Signals and Allelic Heterogeneity That Increases the Trait Variance Explained
    Wu, Ying
    Waite, Lindsay L.
    Jackson, Anne U.
    Sheu, Wayne H-H.
    Buyske, Steven
    Absher, Devin
    Arnett, Donna K.
    Boerwinkle, Eric
    Bonnycastle, Lori L.
    Carty, Cara L.
    Cheng, Iona
    Cochran, Barbara
    Croteau-Chonka, Damien C.
    Dumitrescu, Logan
    Eaton, Charles B.
    Franceschini, Nora
    Guo, Xiuqing
    Henderson, Brian E.
    Hindorff, Lucia A.
    Kim, Eric
    Kinnunen, Leena
    Komulainen, Pirjo
    Lee, Wen-Jane
    Le Marchand, Loic
    Lin, Yi
    Lindstrom, Jaana
    Lingaas-Holmen, Oddgeir
    Mitchell, Sabrina L.
    Narisu, Narisu
    Robinson, Jennifer G.
    Schumacher, Fred
    Stancakova, Alena
    Sundvall, Jouko
    Sung, Yun-Ju
    Swift, Amy J.
    Wang, Wen-Chang
    Wilkens, Lynne
    Wilsgaard, Tom
    Young, Alicia M.
    Adair, Linda S.
    Ballantyne, Christie M.
    Buzkova, Petra
    Chakravarti, Aravinda
    Collins, Francis S.
    Duggan, David
    Feranil, Alan B.
    Ho, Low-Tone
    Hung, Yi-Jen
    Hunt, Steven C.
    Hveem, Kristian
    PLOS GENETICS, 2013, 9 (03):
  • [23] In Silico Fine-Mapping of the GLIS3 Region in Type 1 Diabetes and Type 2 Diabetes
    Li, Quan
    Qu, Hui-Qi
    Bradfield, Jonathan P.
    Grant, Struan F. A.
    Chan, Lawrence
    Hakonarson, Hakon
    Polychronakos, Constantin
    DIABETES, 2011, 60 : A382 - A382
  • [24] Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution
    Magi, Reedik
    Horikoshi, Momoko
    Sofer, Tamar
    Mahajan, Anubha
    Kitajima, Hidetoshi
    Franceschini, Nora
    McCarthy, Mark I.
    Morris, Andrew P.
    HUMAN MOLECULAR GENETICS, 2017, 26 (18) : 3639 - 3650
  • [25] Trans-ancestral fine-mapping of MHC reveals key amino acids associated with spontaneous clearance of hepatitis C in HLA-DQβ1
    Valencia, Ana
    Vergara, Candelaria
    Thio, Chloe L.
    Vince, Nicolas
    Douillard, Venceslas
    Grifoni, Alba
    Cox, Andrea L.
    Johnson, Eric O.
    Kral, Alex H.
    Goedert, James J.
    Mangia, Alessandra
    Piazzolla, Valeria
    Mehta, Shruti H.
    Kirk, Gregory D.
    Kim, Arthur Y.
    Lauer, Georg M.
    Chung, Raymond T.
    Price, Jennifer C.
    Khakoo, Salim, I
    Alric, Laurent
    Cramp, Matthew E.
    Donfield, Sharyne M.
    Edlin, Brian R.
    Busch, Michael P.
    Alexander, Graeme
    Rosen, Hugo R.
    Murphy, Edward L.
    Wojcik, Genevieve L.
    Carrington, Mary
    Gourraud, Pierre-Antoine
    Sette, Alessandro
    Thomas, David L.
    Duggal, Priya
    Ignore, Continue
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (02) : 299 - 310
  • [26] Novel ancestry-specific and putative causal genetic variants for multiple sclerosis identified by an ancestry-informed regression and trans-ethnic fine-mapping analysis
    McCauley, Jacob
    MULTIPLE SCLEROSIS JOURNAL, 2024, 30 (03) : 486 - 487
  • [27] Trans-ethnic Fine-Mapping Implicates Regulatory Variation at Glycemic Quantitative Trait Loci: The African-American Glucose and Insulin Genetic Epidemiology (AAGILE) Consortium
    Raghavan, Sridharan
    Hong, Jaeyoung
    Hara, Kazuo
    Maruthur, Nisa M.
    Lipovich, Leonard
    Guo, Xiuqing
    Florez, Jose C.
    Loos, Ruth J. F.
    Dupuis, Josee
    Liu, Ching-Ti
    Morris, Andrew P.
    Meigs, James B.
    DIABETES, 2015, 64 : A455 - A456
  • [28] Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes
    Robertson, Catherine C.
    Inshaw, Jamie R. J.
    Onengut-Gumuscu, Suna
    Chen, Wei-Min
    Santa Cruz, David Flores
    Yang, Hanzhi
    Cutler, Antony J.
    Crouch, Daniel J. M.
    Farber, Emily
    Bridges, S. Louis, Jr.
    Edberg, Jeffrey C.
    Kimberly, Robert P.
    Buckner, Jane H.
    Deloukas, Panos
    Divers, Jasmin
    Dabelea, Dana
    Lawrence, Jean M.
    Marcovina, Santica
    Shah, Amy S.
    Greenbaum, Carla J.
    Atkinson, Mark A.
    Gregersen, Peter K.
    Oksenberg, Jorge R.
    Pociot, Flemming
    Rewers, Marian J.
    Steck, Andrea K.
    Dunger, David B.
    Wicker, Linda S.
    Concannon, Patrick
    Todd, John A.
    Rich, Stephen S.
    NATURE GENETICS, 2021, 53 (07) : 962 - +
  • [29] Fine-mapping, trans-ancestral and genomic analyses identify causal variants, cells, genes and drug targets for type 1 diabetes
    Catherine C. Robertson
    Jamie R. J. Inshaw
    Suna Onengut-Gumuscu
    Wei-Min Chen
    David Flores Santa Cruz
    Hanzhi Yang
    Antony J. Cutler
    Daniel J. M. Crouch
    Emily Farber
    S. Louis Bridges
    Jeffrey C. Edberg
    Robert P. Kimberly
    Jane H. Buckner
    Panos Deloukas
    Jasmin Divers
    Dana Dabelea
    Jean M. Lawrence
    Santica Marcovina
    Amy S. Shah
    Carla J. Greenbaum
    Mark A. Atkinson
    Peter K. Gregersen
    Jorge R. Oksenberg
    Flemming Pociot
    Marian J. Rewers
    Andrea K. Steck
    David B. Dunger
    Linda S. Wicker
    Patrick Concannon
    John A. Todd
    Stephen S. Rich
    Nature Genetics, 2021, 53 : 962 - 971
  • [30] Trans-ethnic fine mapping identifies a novel independent locus at the 3′ end of CDKAL1 and novel variants of several susceptibility loci for type 2 diabetes in a Han Chinese population
    Kuo, Jane Z.
    Sheu, Wayne Huey-Herng
    Assimes, Themistocles L.
    Hung, Yi-Jen
    Absher, Devin
    Chiu, Yen-Feng
    Mak, Jordan
    Wang, Jun-Sing
    Kwon, Soonil
    Hsu, Chih-Cheng
    Goodarzi, Mark O.
    Lee, I-Te
    Knowles, Joshua W.
    Miller, Brittany E.
    Lee, Wen-Jane
    Juang, Jyh-Ming J.
    Wang, Tzung-Dau
    Guo, Xiuqing
    Taylor, Kent D.
    Chuang, Lee-Ming
    Hsiung, Chao A.
    Quertermous, Thomas
    Rotter, Jerome I.
    Chen, Yii-Der I.
    DIABETOLOGIA, 2013, 56 (12) : 2619 - 2628