In this paper, we derive a comparison principle for non-negative weak sub- and super-solutions to doubly nonlinear parabolic partial differential equations whose prototype is ∂tuq-div(|∇u|p-2∇u)=0inΩT,\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} \partial _t u^q - {{\,\textrm{div}\,}}{\big (|\nabla u|^{p-2}\nabla u \big )}=0 \qquad \text{ in } \Omega _T, \end{aligned}$$\end{document}with q>0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$q>0$$\end{document} and p>1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p>1$$\end{document} and ΩT:=Ω×(0,T)⊂Rn+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega _T:=\Omega \times (0,T)\subset \mathbb {R}^{n+1}$$\end{document}. Instead of requiring a lower bound for the sub- or super-solutions in the whole domain ΩT\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Omega _T$$\end{document}, we only assume the lateral boundary data to be strictly positive. The main results yield some applications. Firstly, we obtain uniqueness of non-negative weak solutions to the associated Cauchy–Dirichlet problem. Secondly, we prove that any weak solution is also a viscosity solution.