A comparison principle for doubly nonlinear parabolic partial differential equations

被引:0
|
作者
Verena Bögelein
Michael Strunk
机构
[1] Universität Salzburg,Fachbereich Mathematik
关键词
Doubly nonlinear parabolic PDE; Comparison principle; 35K55; 35K65; 35K67; 35A02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive a comparison principle for non-negative weak sub- and super-solutions to doubly nonlinear parabolic partial differential equations whose prototype is ∂tuq-div(|∇u|p-2∇u)=0inΩT,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \partial _t u^q - {{\,\textrm{div}\,}}{\big (|\nabla u|^{p-2}\nabla u \big )}=0 \qquad \text{ in } \Omega _T, \end{aligned}$$\end{document}with q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} and p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document} and ΩT:=Ω×(0,T)⊂Rn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _T:=\Omega \times (0,T)\subset \mathbb {R}^{n+1}$$\end{document}. Instead of requiring a lower bound for the sub- or super-solutions in the whole domain ΩT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega _T$$\end{document}, we only assume the lateral boundary data to be strictly positive. The main results yield some applications. Firstly, we obtain uniqueness of non-negative weak solutions to the associated Cauchy–Dirichlet problem. Secondly, we prove that any weak solution is also a viscosity solution.
引用
收藏
页码:779 / 804
页数:25
相关论文
共 50 条