On solving Linear Complementarity Problems by DC programming and DCA

被引:0
|
作者
Hoai An Le Thi
Tao Pham Dinh
机构
[1] University of Paul Verlaine—Metz,Laboratory of Theoretical and Applied Computer Science (LITA)
[2] National Institute for Applied Sciences—Rouen,Laboratory of Modelling, Optimization & Operations Research
关键词
LCP; DC programming; DCA;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider four optimization models for solving the Linear Complementarity (LCP) Problems. They are all formulated as DC (Difference of Convex functions) programs for which the unified DC programming and DCA (DC Algorithms) are applied. The resulting DCA are simple: they consist of solving either successive linear programs, or successive convex quadratic programs, or simply the projection of points on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}_{+}^{2n}$\end{document}. Numerical experiments on several test problems illustrate the efficiency of the proposed approaches in terms of the quality of the obtained solutions, the speed of convergence, and so on. Moreover, the comparative results with Lemke algorithm, a well known method for the LCP, show that DCA outperforms the Lemke method.
引用
收藏
页码:507 / 524
页数:17
相关论文
共 50 条
  • [41] A method for solving bilevel linear programming problems
    Pieume, C. O.
    Fotso, L. P.
    Siarry, P.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2008, 29 (02): : 335 - 358
  • [42] SOLVING MATCHING PROBLEMS WITH LINEAR PROGRAMMING.
    Groetschel, M.
    Holland, O.
    Mathematical Programming, 1985, 33 (03): : 243 - 259
  • [43] A new algorithm for solving linear programming problems
    Ramirez, A. L.
    Buitrago, O.
    Britto, R. A.
    Fedossova, A.
    INGENIERIA E INVESTIGACION, 2012, 32 (02): : 68 - 73
  • [44] SOLVING MATCHING PROBLEMS WITH LINEAR-PROGRAMMING
    GROTSCHEL, M
    HOLLAND, O
    MATHEMATICAL PROGRAMMING, 1985, 33 (03) : 243 - 259
  • [45] Solving Rummikub problems by integer linear programming
    den Hertog, D.
    Hulshof, P. B.
    COMPUTER JOURNAL, 2006, 49 (06): : 665 - 669
  • [46] Solving Rummikub problems by integer linear programming
    den Hertog, D.
    Hulshof, P.B.
    Computer Journal, 2006, 49 (06): : 665 - 669
  • [47] ADAPTIVE METHOD FOR SOLVING LINEAR PROGRAMMING PROBLEMS
    ZENISEK, V
    INTERNATIONAL JOURNAL OF CONTROL, 1972, 15 (01) : 173 - &
  • [48] Solving certain complementarity problems in power markets via convex programming
    G. Constante-Flores
    A. J. Conejo
    S. Constante-Flores
    TOP, 2022, 30 : 465 - 491
  • [49] SOLVING POSSIBILISTIC LINEAR-PROGRAMMING PROBLEMS
    BUCKLEY, JJ
    FUZZY SETS AND SYSTEMS, 1989, 31 (03) : 329 - 341
  • [50] Solving certain complementarity problems in power markets via convex programming
    Constante-Flores, G.
    Conejo, A. J.
    Constante-Flores, S.
    TOP, 2022, 30 (03) : 465 - 491