Global Lower Bounds on the First Eigenvalue for a Diffusion Operator

被引:0
|
作者
Liangdi Zhang
机构
[1] Zhejiang University,Center of Mathematical Sciences
关键词
First eigenvalue; Diffusion operator; Bakry–Émery–Ricci curvature; 35P15; 53C21;
D O I
暂无
中图分类号
学科分类号
摘要
We derive global lower bounds for the first eigenvalue of a symmetric diffusion ΔX:=Δ-∇X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _X:=\Delta -\nabla _X$$\end{document} on Riemannian manifolds with the Bakry–Émery–Ricci curvature bounded from below.
引用
收藏
页码:3847 / 3862
页数:15
相关论文
共 50 条