Cluster-based zero-shot learning for multivariate data

被引:0
|
作者
Toshitaka Hayashi
Hamido Fujita
机构
[1] Iwate Prefectural University,Faculty of Software and Information Science
关键词
Zero-shot learning; Clustering; Machine learning; Multivariate data;
D O I
暂无
中图分类号
学科分类号
摘要
Supervised learning requires a sufficient training dataset which includes all labels. However, there are cases that some class is not in the training data. Zero-shot learning (ZSL) is the task of predicting class that is not in the training data (unseen class). The existing ZSL method is done for image data. However, the zero-shot problem should happen to every data type. Hence, considering ZSL for other data types is required. In this paper, we propose the cluster-based ZSL method, which is a baseline method for multivariate binary classification problems. The proposed method is based on the assumption that if data is far from training data, the data is considered as unseen class. In training, clustering is done for training data. In prediction, the data is determined belonging to a cluster or not. If data does not belong to a cluster, the data is predicted as unseen class. The proposed method is evaluated and demonstrated using the KEEL datasets.
引用
收藏
页码:1897 / 1911
页数:14
相关论文
共 50 条
  • [31] Zero-Shot Program Representation Learning
    Cui, Nan
    Jiang, Yuze
    Gu, Xiaodong
    Shen, Beijun
    30TH IEEE/ACM INTERNATIONAL CONFERENCE ON PROGRAM COMPREHENSION (ICPC 2022), 2022, : 60 - 70
  • [32] Research progress of zero-shot learning
    Sun, Xiaohong
    Gu, Jinan
    Sun, Hongying
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3600 - 3614
  • [33] Research progress of zero-shot learning
    Xiaohong Sun
    Jinan Gu
    Hongying Sun
    Applied Intelligence, 2021, 51 : 3600 - 3614
  • [34] Joint Dictionaries for Zero-Shot Learning
    Kolouri, Soheil
    Rostami, Mohammad
    Owechko, Yuri
    Kim, Kyungnam
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3431 - 3439
  • [35] Creativity Inspired Zero-Shot Learning
    Elhoseiny, Mohamed
    Elfeki, Mohamed
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5783 - 5792
  • [36] Synthesized Classifiers for Zero-Shot Learning
    Changpinyo, Soravit
    Chao, Wei-Lun
    Gong, Boqing
    Sha, Fei
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 5327 - 5336
  • [37] Zero-Shot Learning With Transferred Samples
    Guo, Yuchen
    Ding, Guiguang
    Han, Jungong
    Gao, Yue
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (07) : 3277 - 3290
  • [38] LVQ Treatment for Zero-Shot Learning
    Ismailoglu, Firat
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2023, 31 (01) : 216 - 237
  • [39] Attribute subspaces for zero-shot learning
    Zhou, Lei
    Liu, Yang
    Bai, Xiao
    Li, Na
    Yu, Xiaohan
    Zhou, Jun
    Hancock, Edwin R.
    PATTERN RECOGNITION, 2023, 144
  • [40] A review on multimodal zero-shot learning
    Cao, Weipeng
    Wu, Yuhao
    Sun, Yixuan
    Zhang, Haigang
    Ren, Jin
    Gu, Dujuan
    Wang, Xingkai
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (02)