Quasi-projective reduction of toric varieties

被引:0
|
作者
A. A'Campo–Neuen
J. Hausen
机构
[1] Fakultät für Mathematik und Informatik,
[2] Universität Konstanz Fach D197,undefined
[3] D–78457 Konstanz,undefined
[4] Germany e-mail: Annette.ACampo@uni-konstanz.de,undefined
[5] Juergen.Hausen@uni-konstanz.de ,undefined
来源
Mathematische Zeitschrift | 2000年 / 233卷
关键词
Algebraic Variety; Projective Variety; Toric Variety; Projective Reduction; Categorical Quotient;
D O I
暂无
中图分类号
学科分类号
摘要
We define a quasi–projective reduction of a complex algebraic variety X to be a regular map from X to a quasi–projective variety that is universal with respect to regular maps from X to quasi–projective varieties. A toric quasi–projective reduction is the analogous notion in the category of toric varieties. For a given toric variety X we first construct a toric quasi–projective reduction. Then we show that X has a quasi–projective reduction if and only if its toric quasi–projective reduction is surjective. We apply this result to characterize when the action of a subtorus on a quasi–projective toric variety admits a categorical quotient in the category of quasi–projective varieties.
引用
收藏
页码:697 / 708
页数:11
相关论文
共 50 条