Tools for Malliavin Calculus in UMD Banach Spaces

被引:0
|
作者
Matthijs Pronk
Mark Veraar
机构
[1] Delft University of Technology,Delft Institute of Applied Mathematics
来源
Potential Analysis | 2014年 / 40卷
关键词
Malliavin calculus; Skorohod integral; Anticipating processes; Meyer inequalities; UMD Banach space; Type 2 space; Chain rule; Itô formula; 60H07; 60B11; 60H05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the Malliavin derivatives and Skorohod integrals for processes taking values in an infinite dimensional space. Such results are motivated by their applications to SPDEs and in particular financial mathematics. Vector-valued Malliavin theory in Banach space E is naturally restricted to spaces E which have the so-called umd property, which arises in harmonic analysis and stochastic integration theory. We provide several new results and tools for the Malliavin derivatives and Skorohod integrals in an infinite dimensional setting. In particular, we prove weak characterizations, a chain rule for Lipschitz functions, a sufficient condition for pathwise continuity and an Itô formula for non-adapted processes.
引用
收藏
页码:307 / 344
页数:37
相关论文
共 50 条
  • [41] Discretizing Malliavin calculus
    Bender, Christian
    Parczewski, Peter
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (08) : 2489 - 2537
  • [42] Calculus of directional subdifferentials and coderivatives in Banach spaces
    Pujun Long
    Bingwu Wang
    Xinmin Yang
    Positivity, 2017, 21 : 223 - 254
  • [43] Vector calculus on weighted reflexive Banach spaces
    Enrico Pasqualetto
    Tapio Rajala
    Mathematische Zeitschrift, 2024, 308 (3)
  • [44] Extensions of subdifferential calculus rules in Banach spaces
    Jourani, A
    Thibault, L
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (04): : 834 - 848
  • [45] Calculus of directional subdifferentials and coderivatives in Banach spaces
    Long, Pujun
    Wang, Bingwu
    Yang, Xinmin
    POSITIVITY, 2017, 21 (01) : 223 - 254
  • [46] Ito's formula in UMD Banach spaces and regularity of solutions of the Zakai equation
    Brzezniak, Z.
    van Neerven, J. M. A. M.
    Veraar, M. C.
    Weis, L.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (01) : 30 - 58
  • [47] Levy Laplacians in Hida Calculus and Malliavin Calculus
    Volkov, B. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2018, 301 (01) : 11 - 24
  • [48] Differentiable measures and the malliavin calculus
    Bogachev V.I.
    Journal of Mathematical Sciences, 1997, 87 (4) : 3577 - 3731
  • [49] Malliavin calculus and martingale expansion
    Yoshida, N
    BULLETIN DES SCIENCES MATHEMATIQUES, 2001, 125 (6-7): : 431 - 456
  • [50] Malliavin calculus in a binomial framework
    Cohen, Samuel N.
    Elliott, Robert J.
    Siu, Tak Kuen
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2018, 34 (06) : 774 - 781