Enhancing image resolution of confocal fluorescence microscopy with deep learning

被引:37
|
作者
Huang, Boyi [1 ]
Li, Jia [1 ]
Yao, Bowen [1 ]
Yang, Zhigang [1 ]
Lam, Edmund Y. [2 ]
Zhang, Jia [1 ]
Yan, Wei [1 ]
Qu, Junle [1 ]
机构
[1] Shenzhen Univ, Minist Educ & Guangdong Prov, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Shenzhen 518060, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Super-resolution fluorescence microscopy; Image resolution enhancement; Deep learning; Generative adversarial network; LIMIT;
D O I
10.1186/s43074-022-00077-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Super-resolution optical imaging is crucial to the study of cellular processes. Current super-resolution fluorescence microscopy is restricted by the need of special fluorophores or sophisticated optical systems, or long acquisition and computational times. In this work, we present a deep-learning-based super-resolution technique of confocal microscopy. We devise a two-channel attention network (TCAN), which takes advantage of both spatial representations and frequency contents to learn a more precise mapping from low-resolution images to high-resolution ones. This scheme is robust against changes in the pixel size and the imaging setup, enabling the optimal model to generalize to different fluorescence microscopy modalities unseen in the training set. Our algorithm is validated on diverse biological structures and dual-color confocal images of actin-microtubules, improving the resolution from similar to 230 nm to similar to 110 nm. Last but not least, we demonstrate live-cell super-resolution imaging by revealing the detailed structures and dynamic instability of microtubules.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Enhancing the axial resolution in far-field light microscopy. Two-photon 4pj confocal fluorescence microscopy
    Hell, S.W.
    Lindek, S.
    Stelzer, E.H.K.
    Journal of Modern Optics, 1994, 41 (04)
  • [33] Confocal fluorescence microscopy of leaf cells: an application of Bayesian image analysis
    Hurn, M
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 : 361 - 377
  • [34] Bronchoscopic Fibered Confocal Fluorescence Microscopy Image Characteristics and Pathologic Correlations
    Filner, Joshua J.
    Bonura, Eric J.
    Lau, Stephanie T.
    Abounasr, Khader K.
    Naidich, David
    Morice, Rodolfo C.
    Eapen, George A.
    Jimenez, Carlos A.
    Casal, Roberto F.
    Ost, David
    JOURNAL OF BRONCHOLOGY & INTERVENTIONAL PULMONOLOGY, 2011, 18 (01) : 23 - 30
  • [35] Fluorescence confocal microscopy for pathologists
    Ragazzi, Moira
    Piana, Simonetta
    Longo, Caterina
    Castagnetti, Fabio
    Foroni, Monica
    Ferrari, Guglielmo
    Gardini, Giorgio
    Pellacani, Giovanni
    MODERN PATHOLOGY, 2014, 27 (03) : 460 - 471
  • [36] FLUORESCENCE SATURATION IN CONFOCAL MICROSCOPY
    VISSCHER, K
    BRAKENHOFF, GJ
    VISSER, TD
    JOURNAL OF MICROSCOPY-OXFORD, 1994, 175 : 162 - 165
  • [37] Fluorescence (Multiwave) Confocal Microscopy
    Wetzel, J.
    Kaestle, Raphaela
    Sattler, Elke C.
    DERMATOLOGIC CLINICS, 2016, 34 (04) : 527 - +
  • [38] Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy
    Siegel, Nisan
    Brooker, Gary
    OPTICS EXPRESS, 2014, 22 (19): : 22298 - 22307
  • [39] Enhancing Corn Image Resolution Captured by Unmanned Aerial Vehicles With the Aid of Deep Learning
    Alves Nogueira, Emilia
    Moraes Rocha, Bruno
    da Silva Vieira, Gabriel
    Ueslei da Fonseca, Afonso
    Paula Felix, Juliana
    Oliveira-Jr, Antonio
    Soares, Fabrizzio
    IEEE ACCESS, 2024, 12 : 149090 - 149098
  • [40] Improving spatial resolution of confocal Raman microscopy by super-resolution image restoration
    Cui, Han
    Zhao, Weiqian
    Wang, Yun
    Fan, Ying
    Qiu, Lirong
    Zhu, Ke
    OPTICS EXPRESS, 2016, 24 (10): : 10767 - 10776