A comparison of several numerical methods for the solution of the Convection-Diffusion Equation using the method of finite spheres

被引:0
|
作者
Ali Aslam
Suvranu De
机构
[1] Rensselaer Polytechnic Institute,Scientific Computation Research Center
来源
Computational Mechanics | 2005年 / 36卷
关键词
Convection-diffusion equation; Higher order derivative artificial diffusion method; Inf-sup test; Least-squares; Meshfree method; Method of Finite Spheres; Upwinding;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we compare several numerical methods for the solution of the convection-diffusion equation using the method of finite spheres; a truly meshfree numerical technique for the solution of boundary value problems. By conducting numerical inf-sup tests on a one-dimensional model problem it is found that a higher order derivative artificial diffusion (Ho DAD) method performs the best among the schemes tested. This method is then applied to the analysis of problems in two-dimensions.
引用
收藏
页码:398 / 407
页数:9
相关论文
共 50 条
  • [41] On the numerical solution of a convection-diffusion equation for particle orientation dynamics on geodesic grids
    Zharovsky, Evgeniy
    Moosaie, Amin
    Le Duc, Anne
    Manhart, Michael
    Simeon, Bernd
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1554 - 1566
  • [42] Finite element methods for multicomponent convection-diffusion
    Aznaran, Francis R. A.
    Farrell, Patrick E.
    Monroe, Charles W.
    Van-Brunt, Alexander J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [43] Finite volume methods for convection-diffusion problems
    Lazarov, RD
    Mishev, ID
    Vassilevski, PS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 31 - 55
  • [44] Numerical Solution for a Nonlinear Time-Space Fractional Convection-Diffusion Equation
    Basha, Merfat
    Anley, Eyaya Fekadie
    Dai, Binxiang
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (01):
  • [45] Finite element methods for multicomponent convection-diffusion
    Aznaran, Francis R. A.
    Farrell, Patrick E.
    Monroe, Charles W.
    Van-Brunt, Alexander J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 188 - 222
  • [46] Iterative solution of steady convection-diffusion equation with dominant convection
    Krukier, LA
    Belokon, TV
    ANALYTICAL AND NUMERICAL METHODS FOR CONVECTION-DOMINATED AND SINGULARLY PERTURBED PROBLEMS, 2000, : 185 - 191
  • [47] On the numerical modeling of convection-diffusion problems by finite element multigrid preconditioning methods
    Filelis-Papadopoulos, Christos K.
    Gravvanis, George A.
    Lipitakis, Elias A.
    ADVANCES IN ENGINEERING SOFTWARE, 2014, 68 : 56 - 69
  • [48] Monte Carlo Finite Volume Element Methods for the Convection-Diffusion Equation with a Random Diffusion Coefficient
    Zhang, Qian
    Zhang, Zhiyue
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [50] Spectral collocation method for convection-diffusion equation
    Li, Jin
    Cheng, Yongling
    DEMONSTRATIO MATHEMATICA, 2024, 57 (01)