A comparison of several numerical methods for the solution of the Convection-Diffusion Equation using the method of finite spheres

被引:0
|
作者
Ali Aslam
Suvranu De
机构
[1] Rensselaer Polytechnic Institute,Scientific Computation Research Center
来源
Computational Mechanics | 2005年 / 36卷
关键词
Convection-diffusion equation; Higher order derivative artificial diffusion method; Inf-sup test; Least-squares; Meshfree method; Method of Finite Spheres; Upwinding;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we compare several numerical methods for the solution of the convection-diffusion equation using the method of finite spheres; a truly meshfree numerical technique for the solution of boundary value problems. By conducting numerical inf-sup tests on a one-dimensional model problem it is found that a higher order derivative artificial diffusion (Ho DAD) method performs the best among the schemes tested. This method is then applied to the analysis of problems in two-dimensions.
引用
收藏
页码:398 / 407
页数:9
相关论文
共 50 条
  • [1] A comparison of several numerical methods for the solution of the Convection-Diffusion Equation using the method of finite spheres
    Aslam, A
    De, SR
    COMPUTATIONAL MECHANICS, 2005, 36 (05) : 398 - 407
  • [2] NUMERICAL SCHEMES FOR THE CONVECTION-DIFFUSION EQUATION USING A MESHLESS FINITE-DIFFERENCE METHOD
    Varanasi, Chandrashekhar
    Murthy, Jayathi Y.
    Mathur, Sanjay
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2012, 62 (01) : 1 - 27
  • [3] SOLUTION OF THE CONVECTION-DIFFUSION EQUATION BY A FINITE-ELEMENT METHOD USING QUADRILATERAL ELEMENTS
    RAMADHYANI, S
    PATANKAR, SV
    NUMERICAL HEAT TRANSFER, 1985, 8 (05): : 595 - 612
  • [4] Chebyshev pseudospectral method for computing numerical solution of convection-diffusion equation
    Bazan, F. S. V.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 200 (02) : 537 - 546
  • [5] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    Zhao Ming-deng
    Li Tai-ru
    Huai Wen-xin
    Li Liang-liang
    JOURNAL OF HYDRODYNAMICS, 2008, 20 (01) : 47 - 53
  • [6] Finite Proximate Method for Convection-Diffusion Equation
    Ming-deng Zhao
    Tai-ru Li
    Wen-xin Huai
    Liang-liang Li
    Journal of Hydrodynamics, 2008, 20 : 47 - 53
  • [7] FINITE PROXIMATE METHOD FOR CONVECTION-DIFFUSION EQUATION
    ZHAO Ming-deng
    Journal of Hydrodynamics, 2008, (01) : 47 - 53
  • [8] Numerical Solution of the Steady Convection-Diffusion Equation with Dominant Convection
    Krukier, L. A.
    Pichugina, O. A.
    Krukier, B. L.
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2095 - 2100
  • [9] Solution of convection-diffusion equation by the method of characteristics
    Banas, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 168 (1-2) : 31 - 39
  • [10] Comparison with solution of convection-diffusion by several difference schemes
    He, WP
    Feng, GL
    Dong, WJ
    Li, JP
    ACTA PHYSICA SINICA, 2004, 53 (10) : 3258 - 3264