Scaling on the Spectral Gradient Method

被引:0
|
作者
Fahimeh Biglari
Maghsud Solimanpur
机构
[1] Urmia University of Technology,Department of Mathematics, Faculty of Science
[2] Urmia University,Faculty Of Engineering
关键词
Large scale problems; Nonlinear problems; Secant equation; Barzilai–Borwein method; Nonmonotone line search;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a new method for steplength selection in the frame of spectral gradient methods. The steplength formula is based on the interpolation scheme as well as some modified secant equations. The corresponding algorithm selects the initial positive steplength per iteration according to the satisfaction of the secant condition, and then a backtracking procedure along the negative gradient is performed.
引用
收藏
页码:626 / 635
页数:9
相关论文
共 50 条
  • [1] Scaling on the Spectral Gradient Method
    Biglari, Fahimeh
    Solimanpur, Maghsud
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (02) : 626 - 635
  • [2] An efficient adaptive scaling parameter for the spectral conjugate gradient method
    Zhang, Yang
    Dan, Bin
    [J]. OPTIMIZATION LETTERS, 2016, 10 (01) : 119 - 136
  • [3] An efficient adaptive scaling parameter for the spectral conjugate gradient method
    Yang Zhang
    Bin Dan
    [J]. Optimization Letters, 2016, 10 : 119 - 136
  • [4] New scaling on the gradient method
    Liu, Zexian
    Liu, Hongwei
    He, Chuanmei
    Yang, Jun
    Li, Ming
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY, 2019, 1168
  • [5] Spectral Scaling BFGS Method
    W. Y. Cheng
    D. H. Li
    [J]. Journal of Optimization Theory and Applications, 2010, 146 : 305 - 319
  • [6] Spectral Scaling BFGS Method
    Cheng, W. Y.
    Li, D. H.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2010, 146 (02) : 305 - 319
  • [7] Optimal Scaling Parameters for Spectral Conjugate Gradient Methods
    Fahs A.
    Fahs H.
    Dehghani R.
    [J]. Operations Research Forum, 3 (2)
  • [8] Preconditioned spectral gradient method
    Luengo, F
    Raydan, M
    Glunt, W
    Hayden, TL
    [J]. NUMERICAL ALGORITHMS, 2002, 30 (3-4) : 241 - 258
  • [9] Preconditioned Spectral Gradient Method
    F. Luengo
    M. Raydan
    W. Glunt
    T.L. Hayden
    [J]. Numerical Algorithms, 2002, 30 : 241 - 258
  • [10] Spectral method and its application to the conjugate gradient method
    Liu, Dongyi
    Zhang, Liping
    Xu, Genqi
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 240 : 339 - 347