Optimal Scaling Parameters for Spectral Conjugate Gradient Methods

被引:0
|
作者
Fahs A. [1 ]
Fahs H. [2 ]
Dehghani R. [3 ]
机构
[1] University of Strasbourg, Laboratory ICube, CS 10413 - F-67412, Illkirch Cedex, Strasbourg
[2] School of Arts and Sciences, Lebanese International University, Beirut
[3] Faculty of Mathematics, Yazd University, PO Box 89195-74, Yazd
关键词
Condition number; Global convergence; Spectral conjugate gradient method; Unconstrained optimization;
D O I
10.1007/s43069-022-00141-z
中图分类号
学科分类号
摘要
To improve upon numerical stability of the spectral conjugate gradient methods, two adaptive scaling parameters are introduced. One parameter is obtained by minimizing an upper bound of the condition number of the matrix involved in producing the search direction and the other one is obtained by minimizing the Frobenius condition number of the matrix. The proposed methods are shown to be globally convergent, under appropriate conditions. A comparative testing of the proposed methods and some efficient spectral conjugate gradient methods shows the computational efficiency of the proposed methods. © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
引用
收藏
相关论文
共 50 条
  • [1] Some nonlinear conjugate gradient methods based on spectral scaling secant equations
    Hao Liu
    Yi Yao
    Xiaoyan Qian
    Haijun Wang
    [J]. Computational and Applied Mathematics, 2016, 35 : 639 - 651
  • [2] Some nonlinear conjugate gradient methods based on spectral scaling secant equations
    Liu, Hao
    Yao, Yi
    Qian, Xiaoyan
    Wang, Haijun
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2016, 35 (02): : 639 - 651
  • [3] ON THE CONVERGENCE OF CONJUGATE GRADIENT METHODS INVARIANT TO NONLINEAR SCALING
    DENG Naiyang
    LI Zhengfeng
    (Division of Basic Science
    [J]. Journal of Systems Science & Complexity, 1996, (02) : 128 - 133
  • [4] An efficient adaptive scaling parameter for the spectral conjugate gradient method
    Zhang, Yang
    Dan, Bin
    [J]. OPTIMIZATION LETTERS, 2016, 10 (01) : 119 - 136
  • [5] An efficient adaptive scaling parameter for the spectral conjugate gradient method
    Yang Zhang
    Bin Dan
    [J]. Optimization Letters, 2016, 10 : 119 - 136
  • [6] A class of spectral conjugate gradient methods for Riemannian optimization
    Tang, Chunming
    Tan, Wancheng
    Xing, Shajie
    Zheng, Haiyan
    [J]. NUMERICAL ALGORITHMS, 2023, 94 (01) : 131 - 147
  • [7] Spectral conjugate gradient methods for vector optimization problems
    Qing-Rui He
    Chun-Rong Chen
    Sheng-Jie Li
    [J]. Computational Optimization and Applications, 2023, 86 : 457 - 489
  • [8] Spectral conjugate gradient methods for vector optimization problems
    He, Qing-Rui
    Chen, Chun-Rong
    Li, Sheng-Jie
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (02) : 457 - 489
  • [9] Global convergence of two spectral conjugate gradient methods
    Ghanbari, Mahdi
    Ahmad, Tahir
    Alias, Norma
    Askaripour, Mohammadreza
    [J]. SCIENCEASIA, 2013, 39 (03): : 306 - 311
  • [10] A class of spectral conjugate gradient methods for Riemannian optimization
    Chunming Tang
    Wancheng Tan
    Shajie Xing
    Haiyan Zheng
    [J]. Numerical Algorithms, 2023, 94 : 131 - 147