Gorenstein injective dimension;
Module finite over homomorphism;
13D05;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Let R→S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R\rightarrow S$$\end{document} be a local ring homomorphism and N a finitely generated S-module. We prove that if the Gorenstein injective dimension of N over R is finite, then it equals the depth of R.
机构:
Zibo Normal Coll, Dept Primary Educ, Zibo 255100, Shandong, Peoples R ChinaZibo Normal Coll, Dept Primary Educ, Zibo 255100, Shandong, Peoples R China
Zhang, Zhen
Zhu, Xiaosheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R ChinaZibo Normal Coll, Dept Primary Educ, Zibo 255100, Shandong, Peoples R China
Zhu, Xiaosheng
Yan, Xiaoguang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Xiaozhuang Univ, Dept Math & Informat Technol, Nanjing 211171, Jiangsu, Peoples R ChinaZibo Normal Coll, Dept Primary Educ, Zibo 255100, Shandong, Peoples R China
机构:
Univ Sao Paulo, ICMC, Caixa Postal 668, BR-13560970 Sao Carlos, SP, BrazilUniv Sao Paulo, ICMC, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
Mendoza-Rubio, Victor D.
Jorge-Perez, Victor H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, ICMC, Caixa Postal 668, BR-13560970 Sao Carlos, SP, BrazilUniv Sao Paulo, ICMC, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil