Biophysics of the subgenual organ of the honeybee, Apis mellifera

被引:0
|
作者
O. Kilpinen
J. Storm
机构
[1] Centre for Sound Communication,
[2] Institute of Biology,undefined
[3] Odense University,undefined
[4] DK-5230 Odense M,undefined
[5] Denmark,undefined
来源
关键词
Key words Honeybee; Vibration sense; Subgenual organ; Mechanical model; Stimulus transduction;
D O I
暂无
中图分类号
学科分类号
摘要
The subgenual organ of the honeybee (Apis mellifera) is suspended in a haemolymph channel in the tibia of each leg. When the leg is accelerated, inertia causes the haemolymph (and the subgenual organ) to lag behind the movement of the rest of the leg. The magnitude of this phase lag determines the displacement of the subgenual organ relative to the leg and to the proximal end of the organ, which is connected to the cuticle. Oscillations of the subgenual organ are visualised during vibration stimulation of the leg, by means of stroboscopic light. Video analysis provides fairly accurate values of the amplitude and phase of the oscillations, which are compared with the predictions of a model.   The model comparison shows that the haemolymph channel can be described as an oscillating fluid-filled tube occluded by an elastic structure (probably the subgenual organ). The mechanical properties of the subgenual organ and haemolymph channel resemble those of an overdamped mass-spring system. A comparison of the threshold curve of the subgenual organ determined using electrophysiology with that predicted by the oscillating tube model suggests that the sensory cells respond to displacements of the organ relative to the leg.
引用
收藏
页码:309 / 318
页数:9
相关论文
共 50 条
  • [21] Dual olfactory pathway in the honeybee, Apis mellifera
    Kirschner, Sebastian
    Kleineidam, Christoph Johannes
    Zube, Christina
    Rybak, Juergen
    Gruenewald, Bernd
    Roessler, Wolfgang
    JOURNAL OF COMPARATIVE NEUROLOGY, 2006, 499 (06) : 933 - 952
  • [22] EXPERIMENTAL DIABETES IN THE HONEYBEE (APIS-MELLIFERA)
    MEZGER, S
    FUCHS, J
    HERLITZIUS, H
    ACTA ENDOCRINOLOGICA, 1986, 111 : 130 - 131
  • [23] The physiologic action of the venom of the honeybee (Apis mellifera)
    Essex, HE
    Markowitz, J
    Mann, FC
    AMERICAN JOURNAL OF PHYSIOLOGY, 1930, 94 (01): : 209 - 214
  • [24] Categorization of visual stimuli in the honeybee Apis mellifera
    Julie Benard
    Silke Stach
    Martin Giurfa
    Animal Cognition, 2006, 9 : 257 - 270
  • [25] Resonance frequencies of honeybee (Apis mellifera) wings
    Clark, Christopher J.
    Mountcastle, Andrew M.
    Mistick, Emily
    Elias, Damian O.
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2017, 220 (15): : 2697 - 2700
  • [26] Hygropreference and brood care in the honeybee (Apis mellifera)
    Ellis, Michael B.
    Nicolson, Sue W.
    Crewe, Robin M.
    Dietemann, Vincent
    JOURNAL OF INSECT PHYSIOLOGY, 2008, 54 (12) : 1516 - 1521
  • [27] The seminal fluid proteome of the honeybee Apis mellifera
    Baer, Boris
    Heazlewood, Joshua L.
    Taylor, Nicolas L.
    Eubel, Holger
    Millar, A. Harvey
    PROTEOMICS, 2009, 9 (08) : 2085 - 2097
  • [28] Senescence and learning in honeybee (Apis mellifera) workers
    Tofilski, A
    ACTA NEUROBIOLOGIAE EXPERIMENTALIS, 2000, 60 (01) : 35 - 39
  • [29] Discrimination of single bars by the honeybee (Apis mellifera)
    Horridge, GA
    VISION RESEARCH, 2003, 43 (11) : 1257 - 1271
  • [30] On intraoviductal sperm competition in the honeybee (Apis mellifera)
    Woyciechowski, M
    Krol, E
    FOLIA BIOLOGICA-KRAKOW, 1996, 44 (1-2): : 51 - 53