Structural design of a morphing serpentine inlet using a multi-material topology optimization methodology

被引:0
|
作者
Evan Munroe
Rubens Bohrer
Wajid Ali Chishty
Il Yong Kim
机构
[1] Queen’s University,Department of Mechanical and Materials Engineering
[2] National Research Council Canada,Department of Mechanical and Materials Engineering
[3] Queen’s University,undefined
关键词
Topology optimization; Multi-material; Morphing structures;
D O I
暂无
中图分类号
学科分类号
摘要
A promising avenue for development in the aerospace industry involves relocation of engines from conventional locations beneath the wings, to within the aircraft fuselage. Aircraft with these so-called embedded engines have the potential to increase engine efficiency, but necessitate the use of a serpentine engine inlet duct (S-duct) to provide the propulsion system with air. The optimal shape of an aircraft S-duct varies with flight condition, incentivizing the use of morphing systems to vary inlet parameters during flight: allowing for continual supply of the optimal airflow level. Design of a morphing system therefore requires collaboration across multiple disciplines, including aerodynamic analysis and structural analysis. This work presents a methodology for the structural optimization of morphing systems utilizing aerodynamic shape optimization results as inputs, in order to assess the relationship between morphing performance and structural stiffness. The methodology is implemented on a baseline morphing S-duct model for which shape optimization has been previously conducted. Structural optimization is conducted using a gradient-based multi-material topology optimization software with multi-phase penalization. While the conclusions of this work indicate that the impact of multiple material optimization in the S-duct case study is minimal, the methodology does provide non-intuitive designs capable of supporting morphing. At the expense of structural stiffness, the methodology is shown to increase morphing performance through the generation of compliant mechanisms. A parameter study conducted on the S-duct model successfully proves the ability of the methodology to assess the trade-offs between structural and morphing performance. By emphasizing morphing performance, mass reductions from 1.75 kg to 0.201 kg were observed at the expense of a 94% reduction in fatigue lifecycle.
引用
收藏
页码:389 / 422
页数:33
相关论文
共 50 条
  • [41] Robust topology optimization design of a multi-material structure considering load uncertainty
    Zhao Q.
    Zhang H.
    Jiang R.
    Hua Q.
    Yuan L.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2019, 38 (19): : 182 - 190
  • [42] Multi-material topology optimization for thermal buckling criteria
    Wu, Chi
    Fang, Jianguang
    Li, Qing
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 1136 - 1155
  • [43] Multi-material isogeometric topology optimization for thermoelastic metamaterials
    Xia, Zhaohui
    Zhao, Wanpeng
    Wang, Yingjun
    Li, Peng
    Xiao, Mi
    Gao, Liang
    International Journal of Heat and Mass Transfer, 2025, 245
  • [44] Topology optimization of multi-material structures with graded interfaces
    Chu, Sheng
    Xiao, Mi
    Gao, Liang
    Li, Hao
    Zhang, Jinhao
    Zhang, Xiaoyu
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 346 : 1096 - 1117
  • [45] Multi-material topology optimization of a flux switching machine
    Cherriere, Theodore
    Hlioui, Sami
    Laurent, Luc
    Louf, Francois
    Ben Ahmed, Hamid
    Gabsi, Mohamed
    SCIENCE AND TECHNOLOGY FOR ENERGY TRANSITION, 2023, 78
  • [46] A CONVEX ANALYSIS APPROACH TO MULTI-MATERIAL TOPOLOGY OPTIMIZATION
    Clason, Christian
    Kunisch, Karl
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (06): : 1917 - 1936
  • [47] TOTAL VARIATION REGULARIZATION OF MULTI-MATERIAL TOPOLOGY OPTIMIZATION
    Clason, Christian
    Kruse, Florian
    Kunisch, Karl
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2018, 52 (01) : 275 - 303
  • [48] Multi-material Topology Optimization of Automotive Control Arm
    Chen X.
    Li C.
    Bai Y.
    Yang Z.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (07): : 1088 - 1095
  • [49] Design of Locally Resonant Acoustic Metamaterials with Specified Band Gaps Using Multi-Material Topology Optimization
    Chen, Hongfang
    Fu, Yu
    Ling, Ling
    Hu, Yujin
    Li, Li
    MATERIALS, 2024, 17 (14)
  • [50] Layout design of thin-walled structures with lattices and stiffeners using multi-material topology optimization
    Yang LI
    Tong GAO
    Qianying ZHOU
    Ping CHEN
    Dezheng YIN
    Weihong ZHANG
    Chinese Journal of Aeronautics , 2023, (04) : 496 - 509