An Augmented Lagrangian method for quasi-equilibrium problems

被引:0
|
作者
L. F. Bueno
G. Haeser
F. Lara
F. N. Rojas
机构
[1] Federal University of São Paulo,Institute of Science and Technology
[2] University of São Paulo,Department of Applied Mathematics
[3] Universidad de Tarapacá,Departamento de Matemática
[4] University of São Paulo,Department of Applied Mathematics, Institute of Mathematics and Statistics
关键词
Augmented Lagrangian methods; Quasi-equilibrium problems; Equilibrium problems; Constraint qualifications; Approximate-KKT conditions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an Augmented Lagrangian algorithm for solving a general class of possible non-convex problems called quasi-equilibrium problems (QEPs). We define an Augmented Lagrangian bifunction associated with QEPs, introduce a secondary QEP as a measure of infeasibility and we discuss several special classes of QEPs within our theoretical framework. For obtaining global convergence under a new weak constraint qualification, we extend the notion of an Approximate Karush–Kuhn–Tucker (AKKT) point for QEPs (AKKT-QEP), showing that in general it is not necessarily satisfied at a solution, differently from its counterpart in optimization. We study some particular cases where AKKT-QEP does hold at a solution, while discussing the solvability of the subproblems of the algorithm. We also present illustrative numerical experiments.
引用
收藏
页码:737 / 766
页数:29
相关论文
共 50 条
  • [31] An extragradient-type method for solving nonmonotone quasi-equilibrium problems
    Van, N. T. T.
    Strodiot, J. J.
    Nguyen, V. H.
    Vuong, P. T.
    OPTIMIZATION, 2018, 67 (05) : 651 - 664
  • [32] Extragradient method with Bregman distances for solving vector quasi-equilibrium problems
    Vahid Mohebbi
    Computational and Applied Mathematics, 2022, 41
  • [33] Extragradient method with Bregman distances for solving vector quasi-equilibrium problems
    Mohebbi, Vahid
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [34] Quasi-equilibrium lattice Boltzmann method
    S. Ansumali
    S. Arcidiacono
    S. S. Chikatamarla
    N. I. Prasianakis
    A. N. Gorban
    I. V. Karlin
    The European Physical Journal B, 2007, 56 : 135 - 139
  • [35] DYNAMIC AND QUASI-EQUILIBRIUM LAGRANGIAN MHD IN 1-D
    OLIPHANT, T
    JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 38 (03) : 406 - 412
  • [36] Quasi-equilibrium lattice Boltzmann method
    Ansumali, S.
    Arcidiacono, S.
    Chikatamarla, S. S.
    Prasianakis, N. I.
    Gorban, A. N.
    Karlin, I. V.
    EUROPEAN PHYSICAL JOURNAL B, 2007, 56 (02): : 135 - 139
  • [37] Efficiency in vector quasi-equilibrium problems and applications
    Nguyen Ba Minh
    Le Anh Tuan
    Pham Huu Sach
    Positivity, 2014, 18 : 531 - 556
  • [38] Generalized vector quasi-equilibrium problems with applications
    Ansari, QH
    Flores-Bazán, F
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) : 246 - 256
  • [39] On the Existence of Solutions of Quasi-equilibrium Problems with Constraints
    N. B. Minh
    N. X. Tan
    Mathematical Methods of Operations Research, 2006, 64 : 17 - 31
  • [40] On the existence of solutions to generalized quasi-equilibrium problems
    Truong Thi Thuy Duong
    Nguyen Xuan Tan
    Journal of Global Optimization, 2012, 52 : 711 - 728