Graph Convolutional Neural Network for Pressure Prediction in Water Distribution Network Sites

被引:0
|
作者
Dan Liu
Pei Ma
Shixuan Li
Wei Lv
Danhui Fang
机构
[1] Wuhan University of Technology,School of Safety Science and Emergency Management
来源
Water Resources Management | 2024年 / 38卷
关键词
Empirical modal decomposition; Graph convolutional neural network; Hyperparameter search; Spatial and temporal correlation; WDNs pressure;
D O I
暂无
中图分类号
学科分类号
摘要
The safe operation of water distribution networks (WDNs) is crucial for ensuring the city dwellers’ living standards. Accurate and multi-step predictions of pressure at key sites in WDNs can prevent the occurrence of pipe bursts in the future. Therefore, this study proposes an EMD-Graph-Wavenet-HGSRS model to predict the pressure at several monitoring sites in the WDNs. The LSTC-Tubal method is proposed to repair the abnormal pressure values of the WDNs. Then, the pressure features are enriched by EMD. The predefined adjacent matrix of monitoring points is obtained through the topology of WNDs. And, the enriched pressure features and the predefined adjacent matrix of the monitoring sites are input into the Graph-Wavenet model to predict the pressure values for the next 12 h. In addition, the Graph-Wavenet model is optimized by HGSRS in this study. The results of this study show that the MAE of EMD-Graph-Wavenet decreased by 24.36%, KGE increased by 6.73% compared to Graph-Wavenet. EMD-Graph-Wavenet-HGSRS (optimized by HGSRS) prediction outperforms EMD-Graph-Wavenet model. The MAE of Graph-Wavenet decreased by 40.91% and KGE increased by 11.91% compared to Bi-LSTM. The Bi-LSTM exhibited the best performance among these temporal models, whereas the baseline LSTM had the worst performance. The method proposed in this study can better predict the pressure extremes at each stage of the monitoring sites and provide guidance for the pressure management of actual WDNs.
引用
收藏
页码:2581 / 2599
页数:18
相关论文
共 50 条
  • [41] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS ONE, 2023, 18 (03):
  • [42] Graph Wavelet Convolutional Neural Network for Spatiotemporal Graph Modeling
    Jiang, Shan
    Ding, Zhi-Ming
    Zhu, Mei-Ling
    Yan, Jin
    Xu, Xin-Run
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (03): : 726 - 741
  • [43] A deep graph convolutional neural network architecture for graph classification
    Zhou, Yuchen
    Huo, Hongtao
    Hou, Zhiwen
    Bu, Fanliang
    PLOS BIOLOGY, 2023, 21 (03)
  • [44] Cellular Network Traffic Prediction with Hybrid Graph Convolutional Recurrent Network
    Zhang, Miaoru
    Zhou, Hao
    Yu, Ke
    Wu, Xiaofei
    WIRELESS PERSONAL COMMUNICATIONS, 2024, 138 (03) : 1867 - 1892
  • [45] Network Attack Identification and Analysis Based on Graph Convolutional Neural Network
    Wang, Xingyu
    Wenkun
    Zhang, Yingdan
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1443 - 1448
  • [46] Cellular Network Traffic Prediction with Hybrid Graph Convolutional Recurrent Network
    Zhang, Miaoru
    Zhou, Hao
    Yu, Ke
    Wu, Xiaofei
    Wireless Personal Communications, 138 (03): : 1867 - 1892
  • [47] Prediction of Water Leakage in Pipeline Networks Using Graph Convolutional Network Method
    Sahin, Ersin
    Yuece, Hueseyin
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [48] A Learning Convolutional Neural Network Approach for Network Robustness Prediction
    Lou, Yang
    Wu, Ruizi
    Li, Junli
    Wang, Lin
    Li, Xiang
    Chen, Guanrong
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (07) : 4531 - 4544
  • [49] Embedding-Based Deep Neural Network and Convolutional Neural Network Graph Classifiers
    Elnaggar, Sarah G.
    Elsemman, Ibrahim E.
    Soliman, Taysir Hassan A.
    ELECTRONICS, 2023, 12 (12)
  • [50] Pipe Failure Prediction in the Water Distribution System Using a Deep Graph Convolutional Network and Temporal Failure Series
    Xu, Yanran
    He, Zhen
    ACS ES&T ENGINEERING, 2024, 4 (09): : 2252 - 2262