We introduce the concept of Gaussian integral isoperimetric transfer and show how it can be applied to obtain a new class of sharp Sobolev-Poincaré inequalities with constants independent of the dimension. In the special case of Lq\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^{q}$$\end{document} spaces on the unit n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n$$\end{document}-dimensional cube our results extend the recent inequalities that were obtained in Fiorenza et al. (2012) using extrapolation.