LOWER BOUNDS ON THE NOETHER NUMBER

被引:0
|
作者
K. CZISZTER
M. DOMOKOS
机构
[1] MTA Alfréd Rényi Institute of Mathematics,
来源
Transformation Groups | 2019年 / 24卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The best known method to give a lower bound for the Noether number of a given finite group is to use the fact that it is greater than or equal to the Noether number of any of the subgroups or factor groups. The results of the present paper show in particular that these inequalities are strict for proper subgroups or factor groups. This is established by studying the algebra of coinvariants of a representation induced from a representation of a subgroup.
引用
收藏
页码:823 / 834
页数:11
相关论文
共 50 条
  • [1] LOWER BOUNDS ON THE NOETHER NUMBER
    Cziszter, K.
    Domokos, M.
    [J]. TRANSFORMATION GROUPS, 2019, 24 (03) : 823 - 834
  • [2] LOWER BOUNDS ON THE NUMBER OF TRIANGLES IN A GRAPH
    FISHER, DC
    [J]. JOURNAL OF GRAPH THEORY, 1989, 13 (04) : 505 - 512
  • [3] Lower bounds for the number of subrings in Zn
    Isham, Kelly
    [J]. JOURNAL OF NUMBER THEORY, 2022, 234 : 363 - 390
  • [4] On Lower Bounds for the Chromatic Number of Spheres
    Kostina, O. A.
    [J]. MATHEMATICAL NOTES, 2019, 105 (1-2) : 16 - 27
  • [5] On Lower Bounds for the Chromatic Number of Spheres
    O. A. Kostina
    [J]. Mathematical Notes, 2019, 105 : 16 - 27
  • [6] Lower bounds on the obstacle number of graphs
    Mukkamala, Padmini
    Pach, Janos
    Palvoelgyi, Doemoetoer
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (02):
  • [7] On lower bounds for the chromatic number of sphere
    O. A. Kostina
    A. M. Raigorodskii
    [J]. Doklady Mathematics, 2015, 92 : 500 - 502
  • [8] On lower bounds for the chromatic number of sphere
    Kostina, O. A.
    Raigorodskii, A. M.
    [J]. DOKLADY MATHEMATICS, 2015, 92 (01) : 500 - 502
  • [9] LOWER BOUNDS FOR PSEUDORANDOM NUMBER GENERATORS
    KHARITONOV, M
    GOLDBERG, AV
    YUNG, M
    [J]. 30TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 1989, : 242 - 247
  • [10] LOWER BOUNDS ON THE NUMBER OF SCATTERING POLES
    SJOSTRAND, J
    ZWORSKI, M
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (5-6) : 847 - 857