The sum of the Betti numbers of smooth Hilbert schemes

被引:0
|
作者
Joseph Donato
Monica Lewis
Tim Ryan
Faustas Udrenas
Zijian Zhang
机构
[1] University of Michigan,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2022年 / 55卷
关键词
Hilbert scheme; Cohomology; Homology;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Skjelnes and Smith classified which Hilbert schemes on projective space are smooth in terms of integer partitions λ=(λ1,…,λr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = (\lambda _1,\ldots ,\lambda _{r})$$\end{document} with r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document}, λ=(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(n+1)$$\end{document}, or n⩾λ1⩾⋯⩾λr⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant \lambda _1\geqslant \cdots \geqslant \lambda _r \geqslant 1$$\end{document}. In particular, they found there to be seven families of smooth Hilbert schemes: one with r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document} or λ=(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(n+1)$$\end{document}, one with Hilbert schemes on the projective line or plane, 4 families with λr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r=1$$\end{document}, and one with λr⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r\geqslant 2$$\end{document}. In this paper, we compute the sum of the Betti numbers for all of these families of smooth Hilbert schemes over projective space except the case λr⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r\geqslant 2$$\end{document}.
引用
收藏
页码:393 / 411
页数:18
相关论文
共 50 条