共 50 条
The sum of the Betti numbers of smooth Hilbert schemes
被引:0
|作者:
Joseph Donato
Monica Lewis
Tim Ryan
Faustas Udrenas
Zijian Zhang
机构:
[1] University of Michigan,Department of Mathematics
来源:
Journal of Algebraic Combinatorics
|
2022年
/
55卷
关键词:
Hilbert scheme;
Cohomology;
Homology;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Recently, Skjelnes and Smith classified which Hilbert schemes on projective space are smooth in terms of integer partitions λ=(λ1,…,λr)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda = (\lambda _1,\ldots ,\lambda _{r})$$\end{document} with r=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0$$\end{document}, λ=(n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda =(n+1)$$\end{document}, or n⩾λ1⩾⋯⩾λr⩾1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$n\geqslant \lambda _1\geqslant \cdots \geqslant \lambda _r \geqslant 1$$\end{document}. In particular, they found there to be seven families of smooth Hilbert schemes: one with r=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r=0$$\end{document} or λ=(n+1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda =(n+1)$$\end{document}, one with Hilbert schemes on the projective line or plane, 4 families with λr=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _r=1$$\end{document}, and one with λr⩾2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _r\geqslant 2$$\end{document}. In this paper, we compute the sum of the Betti numbers for all of these families of smooth Hilbert schemes over projective space except the case λr⩾2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda _r\geqslant 2$$\end{document}.
引用
收藏
页码:393 / 411
页数:18
相关论文