The sum of the Betti numbers of smooth Hilbert schemes

被引:0
|
作者
Joseph Donato
Monica Lewis
Tim Ryan
Faustas Udrenas
Zijian Zhang
机构
[1] University of Michigan,Department of Mathematics
来源
Journal of Algebraic Combinatorics | 2022年 / 55卷
关键词
Hilbert scheme; Cohomology; Homology;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, Skjelnes and Smith classified which Hilbert schemes on projective space are smooth in terms of integer partitions λ=(λ1,…,λr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda = (\lambda _1,\ldots ,\lambda _{r})$$\end{document} with r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document}, λ=(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(n+1)$$\end{document}, or n⩾λ1⩾⋯⩾λr⩾1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\geqslant \lambda _1\geqslant \cdots \geqslant \lambda _r \geqslant 1$$\end{document}. In particular, they found there to be seven families of smooth Hilbert schemes: one with r=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0$$\end{document} or λ=(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =(n+1)$$\end{document}, one with Hilbert schemes on the projective line or plane, 4 families with λr=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r=1$$\end{document}, and one with λr⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r\geqslant 2$$\end{document}. In this paper, we compute the sum of the Betti numbers for all of these families of smooth Hilbert schemes over projective space except the case λr⩾2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _r\geqslant 2$$\end{document}.
引用
收藏
页码:393 / 411
页数:18
相关论文
共 50 条
  • [1] The sum of the Betti numbers of smooth Hilbert schemes
    Donato, Joseph
    Lewis, Monica
    Ryan, Tim
    Udrenas, Faustas
    Zhang, Zijian
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 55 (02) : 393 - 411
  • [2] Hilbert schemes and maximal Betti numbers over veronese rings
    Gasharov, Vesselin
    Murai, Satoshi
    Peeva, Irena
    MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (1-2) : 155 - 172
  • [3] A Simple Proof of the Formula for the Betti Numbers of the Quasihomogeneous Hilbert Schemes
    Buryak, Alexandr
    Feigin, Boris Lvovich
    Nakajima, Hiraku
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (13) : 4708 - 4715
  • [4] Hilbert schemes and maximal Betti numbers over veronese rings
    Vesselin Gasharov
    Satoshi Murai
    Irena Peeva
    Mathematische Zeitschrift, 2011, 267 : 155 - 172
  • [5] THE BETTI NUMBERS OF THE HILBERT SCHEME OF POINTS ON A SMOOTH PROJECTIVE SURFACE
    GOTTSCHE, L
    MATHEMATISCHE ANNALEN, 1990, 286 (1-3) : 193 - 207
  • [6] Hilbert schemes and Betti numbers over Clements-Lindstrom rings
    Murai, Satoshi
    Peeva, Irena
    COMPOSITIO MATHEMATICA, 2012, 148 (05) : 1337 - 1364
  • [7] On the Stability of Multigraded Betti Numbers and Hilbert Functions
    Oudot S.
    Scoccola L.
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (01) : 54 - 88
  • [8] Poset embeddings of Hilbert functions and Betti numbers
    Caviglia, Giulio
    Kummini, Manoj
    JOURNAL OF ALGEBRA, 2014, 410 : 244 - 257
  • [9] Limiting Betti distributions of Hilbert schemes on n points
    Griffin, Michael
    Ono, Ken
    Rolen, Larry
    Tsai, Wei-Lun
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01): : 243 - 258
  • [10] HILBERT-FUNCTIONS AND BETTI NUMBERS IN A FLAT FAMILY
    BORATYNSKI, M
    GRECO, S
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1985, 142 : 277 - 292