Polynomization of the Bessenrodt–Ono Inequality

被引:0
|
作者
Bernhard Heim
Markus Neuhauser
Robert Tröger
机构
[1] German University of Technology in Oman (GUtech),Faculty of Science
[2] RWTH Aachen University,Faculty of Mathematics, Computer Science, and Natural Sciences
来源
Annals of Combinatorics | 2020年 / 24卷
关键词
Partition; Polynomial; Partition inequality; Primary 05A17; 11P82; Secondary 05A20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate a generalization of the Bessenrodt–Ono inequality by following Gian–Carlo Rota’s advice in studying problems in combinatorics and number theory in terms of roots of polynomials. We consider the number of k-colored partitions of n as special values of polynomials Pn(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n(x)$$\end{document}. We prove for all real numbers x>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x >2 $$\end{document} and a,b∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b \in \mathbb {N}$$\end{document} with a+b>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a+b >2$$\end{document} the inequality: Pa(x)·Pb(x)>Pa+b(x).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} P_a(x) \, \cdot \, P_b(x) > P_{a+b}(x). \end{aligned}$$\end{document}We show that Pn(x)<Pn+1(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n(x) < P_{n+1}(x)$$\end{document} for x≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \ge 1$$\end{document}, which generalizes p(n)<p(n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(n) < p(n+1)$$\end{document}, where p(n) denotes the partition function. Finally, we observe for small values, the opposite can be true, since, for example: P2(-3+10)=P3(-3+10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_2(-3+ \sqrt{10}) = P_{3}(-3 + \sqrt{10})$$\end{document}.
引用
收藏
页码:697 / 709
页数:12
相关论文
共 50 条