Bayesian paired comparison with the bpcs package

被引:0
|
作者
David Issa Mattos
Érika Martins Silva Ramos
机构
[1] Chalmers University of Technology,Department of Computer Science and Engineering
[2] University of Gothenburg,Department of Psychology
来源
Behavior Research Methods | 2022年 / 54卷
关键词
Bayesian paired comparison; Bradley-Terry; Davidson;
D O I
暂无
中图分类号
学科分类号
摘要
This article introduces the bpcs R package (Bayesian Paired Comparison in Stan) and the statistical models implemented in the package. This package aims to facilitate the use of Bayesian models for paired comparison data in behavioral research. Bayesian analysis of paired comparison data allows parameter estimation even in conditions where the maximum likelihood does not exist, allows easy extension of paired comparison models, provides straightforward interpretation of the results with credible intervals, has better control of type I error, has more robust evidence towards the null hypothesis, allows propagation of uncertainties, includes prior information, and performs well when handling models with many parameters and latent variables. The bpcs package provides a consistent interface for R users and several functions to evaluate the posterior distribution of all parameters to estimate the posterior distribution of any contest between items and to obtain the posterior distribution of the ranks. Three reanalyses of recent studies that used the frequentist Bradley–Terry model are presented. These reanalyses are conducted with the Bayesian models of the bpcs package, and all the code used to fit the models, generate the figures, and the tables are available in the online appendix.
引用
收藏
页码:2025 / 2045
页数:20
相关论文
共 50 条
  • [41] ANALYZING PAIRED COMPARISON TESTS
    DRAPER, NR
    HUNTER, WG
    TIERNEY, DE
    JOURNAL OF MARKETING RESEARCH, 1969, 6 (04) : 477 - 480
  • [42] Adaptive modeling for paired comparison
    Shimotomai, Takayuki
    Aiba, Eriko
    NEUROSCIENCE RESEARCH, 2010, 68 : E210 - E210
  • [43] NEW THEORY OF PAIRED COMPARISON
    LINK, SW
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1977, 10 (04) : 275 - 275
  • [44] NOTE ON PAIRED COMPARISON RANKINGS
    SINGH, J
    ANNALS OF STATISTICS, 1976, 4 (03): : 651 - 654
  • [45] Redback: a Bayesian inference software package for electromagnetic transients
    Sarin, Nikhil
    Hubner, Moritz
    Omand, Conor M. B.
    Setzer, Christian N.
    Schulze, Steve
    Adhikari, Naresh
    Sagues-Carracedo, Ana
    Galaudage, Shanika
    Wallace, Wendy F.
    Lamb, Gavin P.
    Lin, En-Tzu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 531 (01) : 1203 - 1227
  • [46] BPEC: An R Package for Bayesian Phylogeographic and Ecological Clustering
    Manolopoulou, Ioanna
    Hille, Axel
    Emerson, Brent
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 92 (05): : 1 - 32
  • [47] Bayesian beta regression with Bayesianbetareg R-package
    Cepeda-Cuervo, Edilberto
    Jaimes, Daniel
    Marin, Margarita
    Rojas, Javier
    COMPUTATIONAL STATISTICS, 2016, 31 (01) : 165 - 187
  • [48] PyBNesian: An extensible python']python package for Bayesian networks
    Atienza, David
    Bielza, Concha
    Larranaga, Pedro
    NEUROCOMPUTING, 2022, 504 : 204 - 209
  • [49] BayesTwin: an R package for Bayesian analysis of twin data
    Schwabe, Inga
    van den Berg, Stephanie
    BEHAVIOR GENETICS, 2017, 47 (06) : 654 - 655
  • [50] BayesNetBP: An R Package for Probabilistic Reasoning in Bayesian Networks
    Yu, Han
    Moharil, Janhavi
    Blair, Rachael Hageman
    JOURNAL OF STATISTICAL SOFTWARE, 2020, 94 (03): : 1 - 31